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In [BrK] the global existence, uniqueness and a well-posed problem representation of the 3D 
Navier-Stokes equations is shown building on a 

2/1H  (energy) Hilbert space framework. 

Following same conceptual idea, in [BrK1] optimal finite element approximation estimates for 
non-linear parabolic problems with not regular initial value data is proven. In [NaS] the 
elegant role of the 

2/1H  space on the circle in the Teichmüller theory and the universal period 

mapping via quantum calculus is presented. In http://www.fuchs-braun.com/  we build on the 
the 

2/1H  space on the circle and its relationship to the Bagchi reformulation of the Nyman-

Beurling Riemann Hypothesis criterion ([BaB]) to provide one proof of the RH hypothesis.  
 
The Prandtl airfoil uplift force model is based on potential theory requiring certain model 
adaptions, treatments and additional assumptions. The problem arises because lift on an 
airfoil in inviscid flow requires circulation in the flow around the airfoil, but a single potential 
function that is continuous throughout the domain around the airfoil cannot represent a flow 

with nonzero circulation. In space dimension 2n  the Cauchy-Riemann differential 

equations enable the definition of a complex function, by which the flow of an incompressible, 
vortex-free fluid can be modelled. In vector terminology this can be represented in the form 
([RuC]): 
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In [RuC] a generalization of the C-R differential equations for space dimension 3n  is 

proposed in the form 
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which allows also vortex flows with certain vortex line conditions. As for 2n  the vectors w


  

and v


are orthogonal it holds 0)(:  vvvw
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 . Therefore the vortex 

vanishes which leads to the CR differential equation above enabling harmonic analysis 
techniques.  
 
We note that Runge’s  generalized CR differential equations are different from the standard 
generalized CR differential equations in the context of conjugate harmonic functions ([StE] III, 

4), while its characterization by the Riesz transforms (whereby under rotation in nR  the Riesz 
operators transform in the same manner as the components of a vector) is still valid. 
 
The additional vortex flows conditions are basically nothing else than fulfilling the Euler 
equation for stationary flows of an incompressible fluid under the condition that the external 
forces (if existing) do have a potential which is also compatible to the Bernoulli equation.  
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The relationship of the generalized CR differential equations to the Riesz operators, the 

Leray-Hopf orthogonal projection operator on the closed subspace of 
2L  with zero 

divergence, the Calderon-Zygmund theory of singular integral operators and the confluent 
hypergeometric function of first kind is given in [LeN]. 
  

The application of the Cauchy integral theorem (analog to the case 2n ) leads to Prandtl’s 

hydrodynamic model of the fluid fuselage flow sticks along the surface of a  body whereby in 
the boundary layer the velocity increases from zero to the velocity as modelled defined by 
the CR differential equations. Prandtl called the vortexes in this boundary “intermediate” layer 
as “bounded vortex”.  
 
In this note we provide the corresponding linkage of to the existing theory of hyper-singular 
integral equations and its application to the airfoil uplift force theory of L. Prandtl. The Prandtl 
operator enables also a 

2/1H  (energy) Hilbert space, alternatively to the Laplacian operator 

with the standard 
1H  (energy) Hilbert space. 

 

For the following we restrict our self to the space dimension 3n referring to [LiI]. For the 

case 1n  we refer to [KrR]. For a closed connected surface 3RS   we consider the 

harmonic function ([LiI] 4) 
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whereby 
xy  is the angle between the vector yx   and the normal 

yn  to the surface  at the 

point y and )(yv  is the density of the double layer potential. One can seek the solution of the 

Neumann boundary value problem  
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in the form (*), whereby the unknown function )(yv  is obtained by the equation 
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The operator   is called the Prandtl operator.  
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The Prandtl operator has the following properties ([LiI] (4.1.40), proposition 4.2.1, Theorem 
4.2.2, proposition 4.3.1): 
 
Theorem: 
 i) There is a representation 
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ii) The Prandtl operator 

1:  rr HH  is bounded for 10  r  

 
 

iii) For 10  r  the Prandtl operator is Noetherian, i.e. it has a right regularizer R  with  

 

RNRLR  , 

 

whereby RN  is a compact operator in 
rH  , R  is bounded from 

1rH  to 
rH  and the operator 

N  is bounded from 
rH  to 

0H ,The operators NR  and LR are a compact operators in 
1rH . 

 
 

iv) For 
rHv , 2/1r , the function   

 

y

S

xy
dS

yx
yvxu 




2

cos
)(

4

1
:)(





 

 

is an element of )( 3

1 SRH  . 

 
 

iv)  For 12/1  r  the exterior Neumann problem admits one and only on generalized 

solution. 
 
 

Choosing 2/1:r   this leads to the 

 
Corollary: The Prandtl operator 

2/12/1:  HH  is bounded, the function   
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is an element of )( 3

1 SRH  and the exterior Neumann problem admits one and only on 

generalized solution. 
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Relationship to the non-linear Navier-Stokes equations 
 
 
The initial boundary value problem of the three dimensional Navier-Stokes equations is given 
by 
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The pressure p  can be expressed in terms of the velocity by the formula 
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where ),,( 321 RRR   is the Riesz transform. 

 
Runge’s generalized Cauchy-Riemann differential equations 0)()(  uuudiv  (allowing 

potential and vortex flows) are related to the NSE by the formula 
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Applying formally the div-operator to the NSE the pressure filed must satisfy the following 
Neumann problem ([GaG]) 
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where n  denotes the outward unit normal to  . From this follows that the prescription of 

the pressure at the boundary walls or at the initial time independently of u , could be 

incompatible with and, therefore, could retender the problem ill-posed. 
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