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In this paper some computational aspects of wavelets and various wavelet methods have been
reveiwed. The description of existing numerical methods and several useful aspects of wavelets to
solve the differential equations is discussed. Finally, the formulation of some wavelet based numerical
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I. INTRODUCTION:

The applications of wavelet theory in numerical methods for solving differential equations are roughly 20 years
old. In the early nineties people were very optimistic because it seemed that many nice properties of wavelets would
automatically leads to efficient numerical method for differential equations. The reason for this optimism was the fact
that many nonlinear partial differential equations (PDEs) have solution containing local phenomena (e.g. formation
of shock, hurricanes) and interactions between several scales (e.g. turbulence particularly atmospheric turbulence
because there is motion on a continuous range of length scales). Such solutions can be well represented in wavelet
bases because of its nice properties few of them like compact support (locality in space) and vanishing moment
(locality in scale). Furthermore, this early optimism has been already honored by many authors [1–6] working in this
area since then. Nevertheless, there often remains a large gap between a theoretical wavelet paper and the needs of
an applied mathematician. This paper is an attempt to bridge this gap by providing a short review on wavelet based
numerical methods for differential equations.

Most common numerical methods used for numerical solution of physical problems (mostly leads to partial differ-
ential equation) fall in to following classes.

• Finite difference methods (FDM)
The different unknowns are defined by their values on discrete (finite) grid and differential operators are replaced
by difference operators using neighboring points. See [7–9] for details.

• Finite volume methods (FVM)
Similar to the finite difference method, values are calculated at discrete places on a meshed geometry. “Finite
volume” refers to the small volume surrounding each node point on a mesh. See [10] for details.

• Finite elements methods (FEM)
The unknown solution is approximated by a linear combination of a set of linearly independent test functions,
which are piecewise continuous and non vanishing only on the finite number of elements in the domain. Examples
of methods that use higher degree piecewise polynomial basis functions are the hp-FEM. See [11] for details.

• Spectral methods
Utilizing basis functions which are infinitely differentiable and non vanishing on the entire domain (global
support). See [12, 13] for details.

• Wavelet methods
Utilizing basis functions which are differentiable (according to the requirement) and non vanishing on the
compact support. See [14] for details.

Moreover, FDM and FVM are an approximation to the differential equation while other methods are an approximation
to its solution. As we noted earlier, spectral bases are infinitely differentiable, but have global support. On the
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other hand, bases functions used in finite difference or finite element methods have small compact support but poor
continuity properties. Conclusively, spectral method have good accuracy, but poor spatial localization, while FDM,
FVM and FEM have good spatial localization but poor accuracy. Wavelet based numerical methods seem to combine
the advantage (spectral accuracy as well good localization) of all the methods using wavelet bases. Schematically,
common wavelet based numerical methods for differential equations can be separated into the following categories:

• Category 1: Methods based on scaling function expansion
The unknown solution is expanded in scaling function at some chosen level J and differential equation is solved
using a Galerkin approach. This approach can’t exploit wavelet compression hence methods in this category are
not adaptive [15–18].

• Category 2: Methods based on wavelet expansion
The differential equation is solved using a Galerkin approach as in the first category. However, the unknown
solution is expressed in terms of wavelets rather than scaling function. Therefore, this approach can exploit
wavelet compression; either to the solution [19], the differential operator [20], or both [21–23].

• Category 3: Wavelets and finite differences
Here wavelets are used to derive adaptive finite difference methods. Instead of expanding the solution in terms
of scaling function or wavelet expansion, the wavelet transform is used to determine where the finite difference
grid must be refined or coarsened [5, 6, 24–26].

The detailed explanation of these wavelet based numerical methods will be given in subsequent sections.

II. SOME COMPUTATIONAL ASPECTS OF WAVELETS

A. Wavelets

A wavelet is a mathematical function used to divide a given function or continuous-time signal into different scale
components. The word wavelet is due to Morlet and Grossmann in the early 1980s. They used the French word
ondelette, meaning “small wave”. Soon it was transferred to English by translating “onde” into “wave”, giving
“wavelet”. The study of wavelets has attained the present growth due to mathematical analysis of wavelets by
Stromberg [27], Grossmann and Morlet [28] and Meyer [29]. The concept of Multiresolution Analysis (MRA) was
introduced by S. Mallat [30] and Y. Meyer [29]. The first orthonormal bases of compactly supported wavelets are
introduced by I. Daubechies in 1988 [31]. A review of the basic properties of the wavelets and the decomposition and
the reconstruction of functions in terms of the wavelet bases is given by Strang [32] and the details of the mathematical
analysis of wavelets as approximation of functions in L2(R) are described in [33].

Given a basis {fk}k∈I in a Hilbert space H, every f ∈ H can be uniquely represented as

f =
∑

k∈I

ck(f)fk. (1)

A frame is also a set {fk}k∈I in H which allows every f to be written like (1) but it may be linearly dependent (if
frame is linearly independent set for L2(R) then frame gives Riesz basis for L2(R)). Thus, one may get redundant
representation. More precisely, a family {fk}k∈I in a Hilbert space H is a frame for H if ∃ two constant m > 0,
M <∞ such that

m||f ||2 ≤
∑

k∈I
| < f, fk > |2 ≤M ||f ||2, ∀f ∈ H. (2)

Moreover, for every frame ∃ a dual frame {f̃k}k∈I such that

f =
∑

k∈I

< f, f̃k > fk, ∀f ∈ H. (3)

Therefore, bases are optimal for fast data processing, whereas the redundancy inherent in frames increase flexibility
and robustness to the noise, but usually at the price of high computational cost.

Multiresolution analysis (MRA) [30] is the theory that was used by I. Daubechies to show that for any non negative
integer n there exists an orthogonal wavelet with compact supports such that all the derivatives up to order n exist
and characterized by the following axioms:
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• Vj ⊂ Vj+1 (subspaces are nested),

• f ∈ Vj iff f(2(.)) ∈ Vj+1 for all j ∈ Z (invariance to dialation),

•
⋃
j≥0 V

j = L2(R),

• {φ(x− k)|k ∈ Z} is an orthonormal basis for V0 (invariance to translation).

We define Wj to be the orthogonal complement of Vj in Vj+1, i.e. Vj ⊥ Wj and

Vj+1 = Vj + Wj . (4)

There exists a function, which is called a scaling function φ(x) ∈ V0, such that the sequence

φjk(x) = 2j/2φ(2jx− k)k∈Z
is an orthonormal basis for Vj and similarly there exist a function ψ(x) ∈ W0 (which

is called mother wavelet) such that ψjk(x) = 2j/2ψ(2jx− k)k∈Z
is an orthonormal basis for Wj . Since φ0

0(x) =

φ(x) ∈ V0 ⊂ V1, so

φ(x) =

∞∑

k=−∞
hkφ

1
k(x). (5)

Eq. (5) is called dialation equation (two scale relation for scaling function) and for Daubechies compactly supported
scaling function only finitely many hk, k = 0, 1, · · ·D − 1 will be nonzero. Where D is even positive integer called
the wavelet genus and h0, h1, · · · , hD−1 are called low pass filter coefficients. Similarly, Daubechies compactly
supported wavelet ψ(x) ∈ W0 ⊂ V1, therefore

ψ(x) =

D−1∑

k=0

gkφ
1
k(x). (6)

Eq. (6) is called wavelet equation (two scale relation for wavelet function) and g0, g1, · · · , gD−1 are called high
pass filter coefficients. These filter coefficients are connected by the relation gk = (−1)khD−1−k, k = 0, 1, · · · , D−1.

The MATLAB function [hk, gk]=wfilters(‘dbM’,‘r’) computes these filter coefficients, where M = D
2 , see [34]

for details (e.g.: For Haar wavelet M = 1, D = 2, hk = [ 1√
2
, 1√

2
] and gk = [ 1√

2
,− 1√

2
]).

One should notice that there is no closed form analytic (explicit) formula for Daubechies scaling function (φ(x))
and wavelet function (ψ(x)) (except Haar scaling function (φ(x) = 1 if x ∈ [0, 1], φ(x) = 0 otherwise) and Haar
wavelet function (ψ(x) = 1 if x ∈ [0, .5], ψ(x) = −1 if x ∈ [.5, 1], ψ(x) = 0 otherwise)) and it’s value can be computed
only at dyadic points using the cascade algorithm [34, 35].

The MATLAB function
[φi, ψi, xi]=wavefun(‘dbM’,iter) computes the value of φ(x) and ψ(x) at the grid xi = [0, 1

2iter , · · · , D − 1], see
[35] for details. The functions φ(x) and ψ(x) are plotted in Fig. 1 for ‘db2’ and iter=4.

In any wavelet bases or frames, a number of additional properties are desirable, such as smoothness, orthogonality,
compact (local) support, Riesz stability, vanishing moments. We will justify few of them.

• Smoothness: Smoothness is needed to approximate smooth data.
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• Orthogonality: For numerical computation orthogonality leads to fast algorithm. However, orthogonality is
difficult to achieve (like there is no symmetric orthogonal wavelet ψ with compact support) otherwise leads
to the loss of other useful properties. Therefore, in numerical applications orthogonality is relaxed to either
semiorthogonality of biorthogonality. Important references for biorthogonal wavelets are [34, 36]. The orthogonal
wavelet of Daubechies involve a scaling function φ(x) and ψ(x) as discussed in Sec. II A. In case of biorthogonal
wavelet every multiresolution analysis is accompanied by dual multiresolution analysis consisting of nested space
Ṽj with bases given by dual scaling function φ̃jk(x) which are biorthogonal to scaling function

< φjk, φ̃
j

k′
>= δk,k′ , for k, k

′

∈ I.

Moreover the pair (ψjk, ψ̃
j
′

k′
) satisfy the following biorthogonality property

< ψjk, ψ̃
j′

k′
>= δj,j′ δk,k′ , for j, j

′

, k, k
′

∈ I.

The MATLAB function
[φ̃i,ψ̃i,φi,ψi,xi]=wavefun(‘bior2.2’,4) computes the value of φ̃(x), ψ̃(x), φ(x) and ψ(x) at the grid xi =

[0, 1
2iter , · · · , D − 1], see [34] for details. The functions φ̃(x), ψ̃(x), φ(x) and ψ(x) are plotted in Fig. 2 for

‘bio2.2’ (both wavelet and dual wavelet have 2 vanishing moments) and iter=4.

If φjk = φ̃jk, ∀j, k =⇒ orthogonal scaling function.

If Vj = Ṽj , ∀j =⇒ semiorthogonal scaling function.

• Compact support: It also leads to the fast algorithm for numerical computation.

• Vanishing moment: The wavelet is said to have M(M ∈ N) vanishing moment if it verifies the following
condition

∫

R

xnψ(x) = 0, for, n = 0, 1, · · · ,M − 1,

(equivalently scaling function can represents polynomials of degree up to M−1 exactly). This property improves
the efficiency of ψ(x) at detecting singularities in the signal (therefore, wavelet bases are suitable for representing
piecewise smooth function).

1. Univariate wavelet

A “Wavelet System” consists of the scaling function φ(x) and the wavelet function ψ(x). In literature, several
wavelets with different properties have been derived. Few examples of them are given below.

• Haar wavelet ([37]),

• Daubechies wavelets with different compact, supports ([31]),

• Coiflet (Beylkin et al. [20], Daubechies [34]),
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• Block spline semi-orthogonal wavelets (Chui and Wang [38]),

• Battle-Lemarie’s wavelets (Battle [39]),

• Biorthogonal wavelets of Cohen et al. ([36]),

• Shannon’s wavelet and Meyer’s wavelet ([29]).

2. Multivariate wavelet

The simplest way to obtain multivariate wavelets is to employ anisotropic or isotropic tensor products:
(MRA-d) Here, the multivariate wavelets are defined by

ψjl (x) : = ψj1l1 (x1). · · · .ψ
jd
ld

(xd),

j : = (j1, · · · , jd) x, l analogous.

(MRA) Here, anisotropy is avoided by setting j1 = j2 · · · jd = j. The scaling functions are simply the tensor products
of the univariate scaling functions. A two-dimensional MRA can be constructed from the following decomposition:

V j = Vj ⊗ Vj = (Vj−1 ⊕W j−1) ⊗ (V j−1 ⊕W j−1)

= (W j−1 ⊗Wj−1) ⊕ (Wj−1 ⊗ Vj−1)

⊕ (Vj−1 ⊗Wj−1) ⊕ (Vj−1 ⊗ Vj−1)

= W j−1 ⊕ V j−1.

Then we have VJ = WJ−1 ⊕ · · · ⊕W0 ⊕ V0 and wavelet basis is given by

{ψjk ⊗ ψjl , ψ
j
k ⊗ φjl , φ

j
k ⊗ ψjl }k,l∈Z,0≤j≤J−1

∪ {φ0
k ⊗ φ0

l }k,l∈Z
.

B. Periodized Wavelets

Most of the wavelet algorithms can handle periodic boundary conditions easily. However, different possibilities of
dealing general boundary conditions have been studied. The few of them are as follows.

• One approach is to use wavelets specified on an interval where wavelets are constructed satisfying certain
boundary conditions. To achieve wavelet approximation on a bounded interval is to keep all Daubechies’s
wavelets whose supports are totally inside the interval, while modifying those wavelets intersecting the boundary
by an orthonormalization [40–43] (semiorthogonalization in [44, 45]). The disadvantages of this approach are
inconvenience of implementation and wavelet dependence on boundary conditions.

• The variational approach suggested by Glowinski et al. [1] is not applicable for some nonlinear problems,
furthermore, it is impractical for higher dimensions.

• The use of antiderivatives of wavelets as trial functions in [46]. In this way singularities in the wavelets are
smoothened and the boundary conditions can be treated more easily.

• A more satisfactory approach is to use second generation wavelets introduced in [47]. In Sec. II A wavelet

function ψjk(x) are traditionally defined as the dyadic translates and dilates of one particular L2(R) function,

the mother wavelet ψ(x): ψjk(x) = ψ(2jx − j). These wavelets are called first generation wavelets. Second
generation wavelets are more general, where wavelets are not necessarily dilates and translates of single function
but have all nice properties of first generation wavelets, which can be used for general boundary conditions as
well complex geometry [6].

We will discuss wavelet based numerical methods for numerical example with periodic boundary conditions, there-
fore, we explain periodized wavelets in detail. As pointed out by Y. Meyer (1990) the complete toll box built in L2(R)
can be used in the periodic case L2([0, p]) by introducing a standard periodization technique. This technique consists
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at each scale in folding, around the integer values, the wavelet ψjk(x) and the scaling functions φjk(x) centered in [0, p].
Let φ(x) ∈ L2(R) and ψ(x) ∈ L2(R) be the scaling and wavelet function from a multiresolution analysis as defined in
Sec. II A. For any j, l ∈ Z and x ∈ R, we define the p-periodic scaling function

φ̃j,pl (x) =
∞∑

n=−∞
φjl (x+ pn) = 2j/2

∞∑

n=−∞
φ(2j(x+ pn) − l), (7)

and the p-periodic wavelet

ψ̃j,pl (x) =
∞∑

n=−∞
ψjl (x+ pn) = 2j/2

∞∑

n=−∞
ψ(2j(x+ pn) − l). (8)

The p periodicity can be verified as follows

φ̃j,pl (x+ p) =

∞∑

n=−∞
φjl (x+ pn+ p) =

∞∑

m=−∞
φj,l(x+ pm)

=
˜
φj,pl (x),

and similarly ψ̃j,pl (x + p) = ψ̃j,pl (x). Where φ̃j,pl (x) and ψ̃j,pl (x) generates the spaces Vj,p and Wj,p respectively. For

notational convenience φ̃j,1l (x) = φ̃jl (x), ψ̃
j,1
l (x) = ψ̃jl (x).

C. Projection onto space V
j

Let PVjf be the projection of a function f on Vj and

PVjf(x) =
∞∑

k=−∞

cjkφ
j
k(x), x ∈ R. (9)

Two natural ways of representing f on Vj (equivalently going to wavelet space from physical space) are orthogonal
projection and interpolation.

1. Orthogonal projection

The orthogonality of the basis suggest the orthogonal projection. In this case, the expansion coefficients are defined
as

cjk =

∫ ∞

−∞
f(x)φjk(x)dx.

This integral can be approximated by a quadrature method.

2. Interpolation

Using interpolation is also a popular choice for projecting f on Vj . To explain the idea consider the projection of
f on periodic space Vj,1 such that f coincide at node points of level j, where cjk are the expansion coefficients.

f(l/2j) =

2j−1∑

k=0

cjkφ̃
j
k(l/2

j), l = 0, . · · · , 2j − 1.

This can be rewritten as

f(l/2j) =

2j−1∑

k=0

cjkφ̃
j
k−l(l/2

j), l = 0, . · · · , 2j − 1.
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Therefore calculating the coefficients cjk reduces to solving a matrix equation

F j = T jcj ,

where F j is the vector of components f jl = f(l/2j) for l = 0, . · · · , 2j − 1, cj is the vector of coefficients cjk for
k = 0, . · · · , 2j − 1, T j is the circulant matrix of size N = 2j.
cost : If simple Gaussian elimination is used to solve this system, then the cost of finding the cjk is heavy: O(n3)
operations, where n is the order of the matrix. Significantly better performance can be achieved by use of sparse
matrix routines. However, because this system is circulant, using FFT, the solution can be found in O(n log2 n)
operations [48].

D. Wavelet transform (WT)

Wavelet transforms have advantages over traditional Fourier transforms for representing functions that have dis-
continuities and sharp peaks, and for accurately deconstructing and reconstructing finite, non-periodic and/or non-
stationary signals. Wavelet transforms are classified into discrete wavelet transform (DWT) and continuous
wavelet transform (CWT). The continuous wavelet transform Wψf of f ∈ L2(R) with respect to ψ is defined as

(Wψ)(b, a) = |a|−
1
2

∫ ∞

−∞
f(x)ψ(

x − b

a
).

In order to reconstruct f from Wψf , we need to know the constant

Cψ =

∫ ∞

−∞

|ψ̂(w)|2

|w|
dw <∞.

The finiteness of this constant (admissibility condition) restrict the class of L2(R) functions that can be used as
wavelets. Which implies

∫ ∞

−∞
ψ(x) = 0, see [33] for details.

With the constant Cψ , we have the following reconstruction formula

f(x) =
1

Cψ

∫

R2

∫
Wψ(b, a)ψ(

x− b

a
)
dadb

a2
, f ∈ L2(R).

Notice that the possibility of reconstruction is guaranteed by the admissibility condition. Now, in practice, numerical
implementation requires the CWT to be discretized.

f(x) =
∑

j,k∈Z

(Wψf)(bjk, a
j)ψ̃jk(x), (10)

where aj = 1
2j is called the binary dilation (or dyadic dilation) and bjk = k

2j is the binary or dyadic position. However,
this procedure leads to the frames not to the bases. For bases, one needs another approach of DWT based on the
notion of multiresolution analysis.

The orthogonal projection PVj is given by Eq. (9). Since space VJ is decomposed into wavelet space VJ0 +WJ0 +
WJ0−1 + · · · + WJ−1 using the relation (4), we obtain wavelet series

PVJf(x) =

∞∑

k=−∞

cJ0

k φ
J0

k (x) +

J−1∑

j=J0

∞∑

k=−∞

djkψj,k(x), (11)

where J0 (coarsest level of approximation) satisfy 0 ≤ J0 ≤ J . The cJ0

k (scaling coefficients) and djk (wavelet
coefficients) for j = J0, · · · , J − 1 are given by

cJ0

k =

∫ ∞

−∞
f(x)φJ0

k (x)dx, (12)
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djk =

∫ ∞

−∞
f(x)ψjk(x)dx. (13)

The orthonormality properties of the scaling and wavelet functions arising from a multiresolution of L2(R) lead to
simple relations connecting the scaling coefficients and the wavelet coefficients of different levels. Mallat [49] exploited
these relations to develop a fast algorithm which transforms the coefficients from one level of resolution j to the next
coarse level j−1. This yields a fast and accurate algorithm denoted by pyramid algorithm. For Daubechies compactly
supported wavelet system of genus D, using the relation (5)

φj−1
l = 2

(j−1)
2 φ(2j−1x− l) = 2

j
2

D−1∑

k=0

hkφ(2jx− 2l− k)

=

D−1∑

k=0

hkφ
j
2l+k(x).

Similarly, ψj−1
l (x) =

∑D−1
k=0 gkφ

j
2l+k(x) using (6). Using these results in the definitions of the scaling and wavelet

coefficients

cj−1
l =

D−1∑

k=0

hkc
j
2l+k, (14)

dj−1
l =

D−1∑

k=0

gkc
j
2l+k. (15)

Applying the Eqs. (14) and (15) recursively for j = J, J−1, · · · , J0+1, starting with the initial sequence cJl , l ∈ Z gives

the wavelet coefficients. Once the coefficients djl are computed, they remain unaltered in the subsequent calculations.
This gives a very efficient algorithm fast wavelet transform (FWT, decomposition procedure) for the computation
of wavelet coefficients. In matrix vector product form Eqs. (14) and (15) are written as

d = Wc,

where c = cJ = [cJ0 , c
J
1 , · · · , c

J
2J−1]

T and d = [cJ0 ,dJ0 ,dJ0+1, · · · ,dJ−1]T ,dJ = [dJ0 , d
J
1 , · · · , d

J
2J−1]

T . The inverse

fast wavelet transform (IFWT, reconstruction procedure) can be obtained in a similar manner.

The MATLAB function [d] = fwt(x,D,λ) gives the fast discrete periodized wavelet transform, where x is any
vector of periodic function values, D ia wavelet genus and λ = J − J0 is the depth of transform.

E. Connection coefficient

Any numerical scheme for solving differential equations must adequately represent the derivatives and non-linearities
of the unknown function. In the case of wavelet bases, these approximations give rise to certain L2 inner products
of the basis functions, their derivatives and their translates, called the connection coefficients. In Fourier-based
methods, since the products of the basis elements are also basis elements, the procedure does not face any difficulty.
The numerical approximation of the connection coefficients which appear with the wavelet bases is unstable since the
integrands are highly oscillatory. Scaling functions and wavelets do not have explicit analytical expressions but are
implicitly determined by the two scale relations (5) and (6), it is necessary to develop algorithms to compute several
connection coefficients, which occur in the application of the wavelet-Galerkin to differential equations. Specific
algorithms have been devised by Latto et al. [50]. In the most general case we allow φl to be differentiated which
gives rise to the n-term connection coefficients:

∧(l1, l2, · · · , ln, d1, d2, · · · , dn) = ∧d1d2···dn

l1l2···ln =

∫ ∞

−∞

n∏

i=1

φdi

li
(x).

We can alter a doubly subscripted connection coefficient in to a singly subscripted one, and a triply subscripted
connection coefficient in to a doubly subscripted one. We therefore define the two and three term connection coefficients
as

∧d1d2l =

∫ ∞

−∞
φd1(x)φd2l (x)dx, (16)
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TABLE I: φ,ψ ∈ Cα(R),Hβ(R).

D/M 2/1 4/2 6/3 8/4 10/5 12/6 14/7 16/8 18/9 20/10
α - 0 1 1 1 1 2 2 2 2
β 0 0 1 1 2 2 2 2 3 3

and

∧d1d2d3lm =

∫ ∞

−∞
φd1(x)φd2l (x)φd3m (x)dx, (17)

where di ≥ 0. The question of differentiability of φ and ψ is not fully understood (see [34] for details). Let space Cα(R)
denotes the space of functions having continuous derivatives of order≤ α and Hβ(R) = {f ∈ L2(R) : fd ∈ L2(R), |d| ≤
β}. The regularity of Daubechies compactly supported scaling and wavelet functions is shown in Table I. We observe
from Table I that same regularity could be achieved with less number of vanishing moments (e.g. for D/M = 6/3,
φ, ψ ∈ C1(R) and for D/M = 12/6 also φ, ψ ∈ C1(R)). So there are two different issues of maximum regularity and
maximum number of vanishing moment (M) for ψ(x) which should be chosen according to the application [34].

Let f ∈ Vj,1 ∩ Cd(R) then

f (d)(x) =

∞∑

l=−∞

cjl φ̃
j,(d)
l (x), x ∈ R, (18)

f (d) will in general not belong to Vj,1 so we project f (d) back onto Vj,1

PVj,1f (d)(x) =

∞∑

k=−∞

c
j(d)
k

˜
φjk, x ∈ R, (19)

c
j(d)
k =

∫ ∞

−∞
f (d)φ̃jk(x)dx. (20)

Then substituting (18) into (20) systems of equation can be represented in matrix-vector form

cj(d) = D(d)cj. (21)

We will refer to the matrix D(d) as the differentiation matrix of order d. Derivation of Eq. (21) is given in [51] where

[D(d)]k,<n+k>
2j

= 2jd∧dn, k = 0, 1, · · · , 2j − 1,

n = 2 −D, 3 −D, · · · , D − 2.

If the function to be differentiated is periodic with period p then we have

cj(d) = D
(d)
1 cj ,

where D
(d)
1 = D(d)

pd and cj(d) = [c
j(d)
0 , c

j(d)
1 , · · · , c

j(d)
2j−1].

Consider the f ∈ CM (R), then the approximation error will be

ej,1(x) = f(x) − (PVj,1f)(x) (22)

and ||ej,1||∞ = O(2−jM ) (this is exponential decay with respect to j. Furthermore, the greater the number of vanishing
moments M , the faster the decay. In contrast, FDM and FEM yields convergence rates that are only algebraic in N
(degree of freedom), typically O(N−2) or O(N−4)), where PVj,1f(x) is orthogonal projection of f on Vj,1 as defined
in Sec. II C. It is comparable to accuracy of spectral method :for problems with smooth solutions convergence rates

are O(e−cN ) or O(e−c
√
N )

Furthermore, the space Vj,1 can exactly represent polynomials up to degree M − 1 (error term in Eq. (22) will be
zero), however differentiation matrix is accurate of order 2M . This doubling of the accuracy is also encountered in
FEM and is known as superconvergence (which is lost in case of general boundary condition).
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III. WAVELET BASED NUMERICAL METHODS

A. Wavelet Galerkin method

In Galerkin method the degrees of freedom are the expansion coefficients of a set of basis functions and these
expansion coefficients are not in physical space (means in wavelet space). Moreover, in wavelet Galerkin methods the
treatment of nonlinearities is complicated which can be handled with couple of techniques.

• Using the connection coefficients discussed in Sec. II E (expensive approach due to the summation over multiple
indices).

• Using the quadrature formula [52] (loses its accuracy due to approximate calculation).

• Pseudo approach [23] (first map wavelet space to physical space, compute nonlinear term in physical space and
then back to wavelet space, this approach is not very practical because it requires transformation between the
physical space and wavelet space).

The derivatives can be obtained using the differential matrix discussed in Sec. II E.

B. Wavelet collocation method

Collocation method involve numerical operators acting on point values (collocation points) in the physical space.
Generally, wavelet collocation methods are created by choosing a wavelet and some kind of grid structure which will be
computationally adapted. In effect, one obtains finite differences on nonuniform grid. The treatment of nonlinearities
in wavelet collocation method is straightforward task due to collocation nature of algorithm. The derivatives can be
obtained like interpolation method for projecting f on Vj discussed in Sec. II C 2.

Moreover, proofs are easier with Galerkin methods, whereas implementation is more practical with collocation
methods.

C. Numerical example

We illustrate various wavelet based numerical methods for heat equation in one–dimension with periodic boundary
conditions.

ut = νuxx + f(x), t > 0

u(x, 0) = h(x), 0 ≤ x ≤ 1,
(23)

where ν is a positive constant, f(x) = f(x+ 1) and h(x) = h(x+ 1).

1. Method based on scaling function expansion

Let us first leave the spatial variable x continuous and discretize only the time to obtain the Euler scheme:

unt =
un+1 − un

δt
= νunxx + f(x). (24)

Now to obtain solution uj ∈ Vj,1 we apply wavelet-Galerkin method to (24) with approximation of the form

uj(x) =

2j−1∑

k=0

cjkφ̃
j
k(x), (25)

where cjk is the unknown coefficient of scaling function expansion of uj(x). The Galerkin discretization scheme gives

(
cn+1
u − cnu

)
= νδtD(2)cnu + δtcf , (26)
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where cu denote the vector of scaling function coefficients corresponding to u and cf is given by

(cf )
j
l =

∫ 1

0

f(x)φ̃jl (x)dx,

and D(2) is discussed in Sec. II E. Finally, we arrive at the linear algebraic system

Acu = F , (27)

which can be solved using any linear algebraic solver. Hence this comes under the category 1 discussed in Sec. I.

2. Method based on wavelet function expansion

By rewriting Eq. (27) in the following form

WAWTWcu = WF , (28)

and substituting du = Wcu and df = Wcf in Eq. (28)

WAWT du = dF . (29)

This comes under the category 2 discussed in Sec. I.

3. Method based on physical space representation

Multiplying Eq. (26) by T j

T j
(
cn+1
u − cnu

)
= νδtT jD(2)cnu + δtT jcf , (30)

(
un+1 − un

)
= νδtT jD(2)cnu + δtf. (31)

By redefining f = {f(xl)}
2J−1
l=0 , this can also seen as a wavelet collocation method for the solution of (23). This

is also based on scaling function expansion and does not exploit any wavelet compression, hence it also comes under
the category 1 discussed in Sec. I.
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