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L.,-CONVERGENCE OF FINITE ELEMENT
GALERKIN APPROXIMATIONS
FOR PARABOLIC PROBLEMS (")

by Joachim A. NirscHg (})

Abstract. — Using weighted norms L, -error estimates of the Galerkin method for second
order parabolic initial-boundary value problems are derived.

0. INTRODUCTION

Let the model problem
u—Au=f in Qx(0, T],
u=0 on dQx(0, T], )
u, =0 = uo iIl Q
be given. With S, < H, being a finite dimensional space — we will consider only

finite elements — the standard Galerkin approximation u, =u,(t)€ S, is defined
by

(U, X)+D (un, x)=(f, %) for xeS, and te(0, 7] 2
with
uy (0)=Qy uy. (29

Here(., .)is the L, (Q)-scalar-product and D (., .) the Dirichlet integral. Q, may be
any computable projection onto S,. Substitution of f by u— Au gives for the
error e=u—u, the defining relation

(e, x)+D(e, x)=0  for %eS,. (3)

(*) Manuscrit regu le 6 avril 1978.
(*) Institut fir Angewandte Mathematik, Albert-Ludwigs-Universitit, Freiburg i. Br.,
République Fédérale d’Allemagne.
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32 J. A. NITSCHE

Because of the Hilbert-space setting error estimates in Sobolev-norms are
available primarily. This part of the convergence analysis is solved now in a
satisfactory way. In part (b) of the bibliography a number of papers dealing with
this question is listed.

With the help of special techniques in one space dimension there are also
results in the maximum-norm. We refer to Archer [1], Cavendish-Hall [4],
Douglas-Dupont [6], Douglas-Dupont-Wheeler {7], Thomee [15], Wahl-
bin [16], and Wheeler [17]. Seemingly L -estimates for general space
dimensions are only treated by Bramble-Schatz-Thomee-Wahlbin [3]. The idea
is to write (3) in the form

e+Tie=(I—Ry)u @)

Here to any f the element U,=R,A™ ! f =T, f €S, is the Ritz approximation on
—A™! f defined by

DUy x)=(f,x)  for xeS ©)

In this way L _-estimates for the elliptic problem give rise to corresponding
estimates for the parabolic problem. Using Sobolev-type embedding theorems
Bramble et al. derive L -estimates in terms of L,-estimates of time derivatives of
sufficiently high order depending on the dimension of Q.

The aim of this paper is to give estimates the type

H e HLAL;éChm { H u HL:(W:)‘*‘ ” u "LX(W;)+ H i HLE(W;)}- (6)

Here we consider only the case u,(0)= R, u,. More general initial conditions
and also the discretisation in time will be discussed in a forthcoming paper.

Similar to the elliptic case extensively we use weighted norms, see Natterer [8]
and Nitsche [10] and [11]. The corresponding approximation properties of finite
elements are derived in sections 2,3. A needed generalization of the boundedness
of the L,-projection is given in section 4 and the main error analysis in 5-7.

1. NOTATIONS, FINITE ELEMENTS

In the following Q< R denotes a bounded domain with boundary 0Q
sufficiently smooth. For any Q' = R" let W% (Q') be the Sobolev space of functions
having L -integrable generalized derivatives up to order k. In case p=2 we also
adopt H,(Q')=W%(Q’). The norms are indicated by the corresponding
subscripts. H 1 (Q') is the closure in H,(Q') of the functions with compact
support.

R.A.ILR.O. Analyse numérique/Numerical Analysis



L, -CONVERGENCE OF FINITE ELEMENTS FOR PARABOLIC PROBLEMS 33

For T>0 fixed the spaces L,(W*(Q")=L,(0, T, Wk(Q") consist of functions
u=u(t)e Wg(Q') such that || u(t) || s, is L,-integrable (respective a. e. bounded
for p=oc) in (0, T) with the norms

Jllsoan={ | )

Incase Q'=QwedropQ,i.e. H = H,(Q), etc. If there is no confusion we will also
simply write u instead of u(t).

1/p
{’V:m,)dt} . 1.1

In addition we consider weighted semi-norms. Let — | - | denotes the euclidian
distance in RV :
b= |x—xo|24p? (1.2)
with x,€Q and p>0. We define

1/2
Hvkv||a,,,={MIZ:RL,Jp—qmdex} . (1.3)

(., .),.q is the corresponding bilinear form. According to above we drop Q' in
case Q' =Q. Furthermore, the L, (0, T)-norm of || u||,= || u(t) ||, o is denoted by
|| .|| with subscript L, (a).

By T, a subdivision of Q into generalized simplices A; is meant, i.e. A; is a
simplex if A;intersects dQin at most a finite number of points and ortherwise one
of the faces may be curved. T, is called »-regular if to any A; e [, there are two

spheres withradii » ~! hand » hsuch that A; contains the one and is contained in
the other.

The finite element spaces S,=S(I',) have the following structure: Let the
integer m be fixed. Any y € S, isin C°(Q), i. €. continuous in €, and the restriction
to A;eT, is a polynomial of degree less than m. In the curved elements we use
isoparametric modifications as discussed by Ciarlet-Raviart [5], Zlamal [18]. S,
is the intersection of S, and H 1

By construction we have S, S H, but in general S, & H, for k>2. It is useful to
introduce the spaces H; = Hy (I",) consisting of functions in L, the restriction of
whichto any A; e U, is in H, (A,). Obviously S, < H; for all k. Parallel to (1 . 3) we
use the “broken’ semi-norms

1veo]

;={A§||v'<vu§_,x}”2. (1.4)

In order to avoid difficulties we will use three different letters for the
“constants” in the estimates: k, y, and ¢ with the following distinctions:

(i) ky, k,, . . . denote numerical constants depending only on N and m (the
space-dimension and the degree of the finite elements used);

vol. 13, n° 1, 1979



34 J. A. NITSCHE

(ii) the parameter p in (1 .2)is independent of x but will change with h. Most
of the lemmata and theorems are only valid if p is not too small compared
with h. The corresponding conditions are formulated by “for y; h < p” respective
“lety;h=p”. Of course the y's depend on N, m, the domain Q and the regularity
factor % of I'y;

(iii) numerical constant with the same dependence as the y’s but entering
directly the estimates are denoted by ¢, ¢,, ¢,, . . . Normally just c is used, it
may differ at different locations. In order not to loose control in section 5 the
constants ¢ are numbered.

The case m=2, i.e. linear finite elements, need special treatment. Then
logarithmic terms of A will appear in the error bounds, see [12] for the elliptic
problem. In order not to overburden the paper we assume

m=3. (1.5

Furthermore we consider only regular subdivisions with some fixed . Finally
we remark the powers of p for the weights u® are always within the limit
|a|<2N.

2. APPROXIMATION PROPERTIES IN WEIGHTED NORMS

Let A;eT’, be any simplex as described in section 1. Then p(1.2) does not
change too fast if p is not too small compared with 4 :

Lemma 1: Let v, h<p with y,=2x%. Then

sup 1 (x) =3 inf p(x). 2.1

xel; XeA;

Proof: Let x, xeA; be points with

= ¢ )=1nf eA;},
" u(i) {p()|xeA;} } 2.2

p=p(x)=sup{p(x)|xeA;}.

Since in A, :
| V| <2|x—x0| 212, (2.3)
we get
R=p(X)=p(x)+(x— x).VpSp+|x— x|2p'72 (2.4
We have | x— X | <»h and therefore

pEp+2xhpt2, 2.5)

R.A.LLR.O. Analyse numérique/Numerical Analysis



L ,-CONVERGENCE OF FINITE ELEMENTS FOR PARABOLIC PROBLEMS 35

Schwartz’s inequality in the form

1
2%hu1/2§5p+2x2h2
gives

n<2p+4%2h?, (2.6)

Now —independent of x:
pzp’zyih? 2.7
and therefore the lemma is shown.
The approximability property

[V 0= |7y Sk 2NV 0|y OSksISm) (2.8)
with a proper interpolation resp. approximation y € S, is well known. Because of
lemma 1 we get from this

||V"(v—x)“f.AéT‘hz““")“V‘v“f‘A, 2.9
and after summation over A;eI},.
Lemma 2: Let y{ h<p. To any ve H| there is a x €S, according to
[VE—x)||sSch || Vio|ls  (0Zk=ZI<m). (2.10)
REeMARK: Since (2 . 8) holds also forv € H s withaye §,, lemma 2 remains valid
if H}, S, is replaced by H;n H, and S,.
The proof of the next lemma follows the same lines and is omitted here.
LemMma 3: Let v, h<p. Then Bernstein-type inequalities hold: For any x € S:
IVix|laSch | VEx |l (O=kZi<m). (2.11)
Multiplication of a function in S, resp. §,, gives no longer a function in these

spaces. But still a certain “super-approximability”” property of such functions is
valid (see Nitsche-Schatz [13]):

LeMMa 4: A function p~° ¢ with ¢ € S, (resp. 8;) canbe approximated by ay € S,
(resp. S;) according to

“Vk(ll_b(P—X) ;éc{hm_kn(l’ “a+2b+m+h2_kH V(P“a+2b+1 } (2.12)

Before proving the lemma let us consider e. g. the case a= —b and k=0. Then
(2.12) means

e Po—x|-sSc{m||@|lo+mth*||VO|ls+1}- (2.13)

vol. 13, n°® 1, 1979



36 J. A. NITSCHE
Now using (2.11) with /=1, k=0 and the obvious inequality
fello+s=p~|lo s (2.14)
for b’ =0 we get
e~ e—xl-ssct/p)| o], (2.15)

By choosing vy in yh<p sufficiently large the bound on the right hand side
becomes as small as wanted.

In order to prove lemma 4 we apply lemma 2 with /=m and get
| V¥~ o —0)||la S ch™ 7 || V™ (> 0) |2 (2.16)

Since @ €S, is piecewise a polynomial of degree <m and because of

|Dfpb| Scpi el (2.17)
Leibniz’s rule gives
m—1
V"t olis ¢ 1V @llzsasemen (2.18)

The term with n=0 in connection with (2. 16) leads to the first term of the right
hand side in (2.12). Using lemma 3 and (2. 14) we get for the rest

m—1 m—1
Zl ”Vn(p||;+2b+m—-n§c Z hl—n||V(p“a+2b+m—n
n= n=1
m—1
§Ch2_m”V(P“a+2b+1 z (h/py"~17" (2.19)
n=1

The last sum is bounded because of h < p, thus the lemma is proved.

3. SHIFT THEOREMS, “A PRIORI” ESTIMATES

Solutions of boundary value problems obey certain shift theorems. Assume
we H, and k>0. Then the norm of u in H,, , is equivalent to that of Auin H,:

e lul

o S | Aul| sl u]

Hyoa. G.1

A direct consequence is :

LEMMA 5: Let k=2 be an integer. Then for any uvsfnl1 NH:

k—2
9 uloSe{ S 1 8ullrnezeat [ Vallaones [} 622

R.AI.R.O. Analyse numérique/Numerical Analysis



L-CONVERGENCE OF FINITE ELEMENTS FOR PARABOLIC PROBLEMS 37

In order to prove the lemma the shift theorem (3 . 1) has to be applied top =2 u
withb=aresp.a+1,a+2, ... andkresp. k—1,k—2, . .. The details are left.

There are some exceptions if a is an integer and one of the indicesa+k—2—n
in the sum of (3.2) is zero. We will oniy need

LeMMA 5 : Let we H, n H;. Then
V2 wll- e (|| awl| -+ ]| Aw]]}. 3.3)
172l a5 {1V Awl| o+ | Aw] -+ | ]} 6.4

We will only give the proof of (3.3). We have
N
Viwl||2,=p*||V:w|?*+ ¥ Jj(xi*xo,i)z |V3w|2. (3.9
i=1
The shift theorem gives for the first term

plV2 il scp{||VAw|+||Aw]}
sc{l|vaw] - +faw] -} e {||VAw]l -, +[|aw]]}. 3.6

For the other terms we apply (3.1) with k=1 and u=(x; — xo;)w. Since V3u
differs from (x; — x,;) V? w only by derivatives of w up to order 2 and the same is
true for V Au and (x; —x,,,) V Aw we get

H(xi—xo,i)ﬂww\z gcﬂ{(x,.—xo,i)z\VAw|2+|v2w|2+|Vw|2}. 3.7

The first integrand is bounded by ||V Aw||2, whereas the rest is bounded by
|| A 2.

In general in (3 .2) the terms with u and Vu are present. But depending on a
and k they may be interchangeable resp. can be dropped.

LeMMA 6: Let ueIf’I1 N H,. Then:

(i) for b<0 the norms || Vul||, and ||u||,+, are comparable modulo || Au/|,_,,
i.e.

e s o8

[uallor s kL[| Vel + [ Auffy-o}-

(ii) for 0<b<(N/2)—1(N >2) both terms are bounded by the last, i.e.:
l[ulloss+ [} Vulloskl|Auls-.. (3.9

vol. 13, n° 1, 1979



38 J. A. NITSCHE
(iii) the case b=(N/2)—1 gives
N(N-2)p?||ul|z:2+2||Vu||z2=2D(u, p~"w). (3.10)
(iv) for arbitrary b the term with V u is always bounded by the others

IV ullsk(lullor+[] Aufls-). (3.11)

The relation
|Vu||2=D@, u"’u)—fquuVu"’ (3.12)

is an identity which may be written also in the form

|| Vu ||z =D (u, u"’u)+%J]u2 Ap~l=(u, —Au),,-+—%j[u2 Ap~?. (3.13)

Now direct differentiation gives—r=|x—x,| :
Ap=P= —2bp "2 (N p* +(N=2b—2)r?). (.14

We prove only case (i) in detail, the other proofs follow the same lines. Now let

b<0. Then Ap~? is positive and p®*! Ap~? is bounded and bounded away from
zero (3.13) then gives

|Vl <@ —Awy,+k|ul|2: 2@, —Awy+k~ | u|2ir. (3.15)

Now the assertions of the lemma, part (i) follow from this and the obvious
generalization of Schwarz’s inequality — b’ being arbitrary:

(u, D)béllullb—-b'|1v”b+b'- (3.16)
For the sake of completeness we note also

D(u, )< ||Vu|l_,|| Vo], (3.17)

In section 5 we will introduce to ® € §,, an auxiliary function w defined by

_ — —a—1 M
Aw=p ® in .Q,} (3.18)

w=0 on Q.

Some of the needed estimates are handled here, the rest will be given in the
appendix.

Because of So,l <H ;1 we have the regularity we H 1 N H;. We will need a bound
for the (— a)-seminorm of the third derivatives. With the help of lemma 5 we get

IV2w|| e {[|VAw]| ot A0l -arr+ [Vl -wrzt [l]l-aea}. (3.19)

R.A.LLR.O. Analyse numérique/Numerical Analysis



L_,-CONVERGENCE OF FINITE ELEMENTS FOR PARABOLIC PROBLEMS 39

First we have
180 -y = [ @[ (3.20)
Next we get
V@) o=V ) o Sc{[|@fasrs+[|VO[arz}.  3.2D
Lemma 3 and (2. 14) give
|VAw|| o+ || Aw]| —as 1 Sch ™2 (B/P) | ® || a1 (3.22)
In this way we have shown.
Lemma 7: Let w be defined by (3.18) with o arbitrary. Then
12 wl| g (A2 /D@l + | Vil carzt [[0] -} (3.23)

In deriving this lemma we have applied lemma 5. According to lemma 5’ there
is the modification.

LeMMA 7': Let w be defined by (3 . 18). In case of the exceptional values o.=1,2
instead of (3 .23) the estimates hold true

V2wl <ch™2@/p) || @] }

3.24
1V 0] s <ch-2(h/p) | @3 + | Vo]]. G249

4. L,-PROJECTIONS

To any v the approximations y € S, guaranted by lemma 2 may be replaced by
Vi =P,veS, with the L,-projector P, defined by

Vi 0)=(v, %) for ye8s,. 4.1
As a first result we mention :

THEOREM 1: P, is bounded with respect to any weighted norm, i.e. for a fixed
there is a y, =7, depending only on N, m, w and a such that for y, h<p:
[Pyolla=2] vl 4.2)

This was presented at Second Conference on Finite Elements, Rennes 1975,
and appeared in the proceedings of that conference, see [10]. But those were
distributed only in a limited number. With the above preparations the proof is
rather short and will be reproduced here. Let @ = P, vand y € S, be arbitrary. Then
with Schwarz’s inequality (3 . 16):

lollz =(e. p 2 P)=(0—v, b @ —%)+ (v, ¢),
Slo—vlallr™0—xll-at ||v]la [| @]l 4.3)
vol. 13, n° 1, 1979



40 J. A. NITSCHE

The consequence (2. 15) of lemma 4 gives
lollz < ct/p) o]z +QA+ct/od| vl (@]l 4.9

Now we choose v, =Max (y,, 3¢) and get in case of y, h < p:
1 4
lolle =3llel+3llvlk- 4.5)

A well-known consequence of theorem 1 is the “almost best”” approximability
lv—Pyo|l. 3 inf{||v—x|l.|x €Sk} (4.6)

In addition we have the property of simultaneous approximability of P,v on v
which we formulate only in the way needed below:

COROLLARY 1: With the assumptions of theorem 1:
|lv—Puo|la+h||V@=Pyv)|. £ cinf{||o—x . +R|VO—0) || xESH}. 4.7

Proof: Let again ¢ =P, v for abbreviation and let y € S, be arbitrary. Then in
using lemma 3 applied to ¢ —y €S, we get

hIVe-o)|l. = k||[Ve—0) |l +h]|Vie—0) .
< h|[Ve=0tcllo—xl
Sh|Vo—0|la+cllv—0|l.+c|lo—xll. (4.8)
and therefore with (4. 6):
lo-olt Vol <3¢+ |o-zl+HIVE—0]). ©.9

Since y € S, is arbitrary (4 .9) is also correct with the infimum taken on the right
hand side.

REMARK: All of the above statements hold true if S, is replaced by 3.

Remark: If ve Hj resp. ve ﬁl N Hj then according to lemma 2 the right hand
side of (4.7) is bounded by ch'||V'v||;. This gives the simultaneous error
estimates

|VE(w—Pyv)||a S ch'*||Vio |, (k=0,1). (4.10)

For completeness we mention the result of Bramble-Scott [2] on simultaneous
approximability which could be applied also here. But since the question of
interpolation in weighted norms is not well-developed the direct proofis shorter.
Another possibility would have been to apply the ideas of [9].

R.A.LLR.O. Analyse numérique/Numerical Analysis



L ,,-CONVERGENCE OF FINITE ELEMENTS FOR PARABOLIC PROBLEMS 41

5. ESTIMATES IN WEIGHTED NORMS FOR FIXED TIME

In order to derive error estimates for the Galerkin method it is convenient to
compare the Galerkin solution u, with an appropriate approximation U, on u in
the subspace S,. We will take the Ritz approximation U,=R,ue 3, defined
by —see (5):

Du—U, y)=0 for ye&,. (5.1)
The error
e=u—u, (5.2)
can be splitted
e:(u—Uh)—(uh_Uh):g—(D (53)

with the effect that now ® is an element of 3,. The defining relation for ®
is —see (3):

(@, 9)+D (@, Y)=(, %) for yeS,. (5.4

Since estimates for ¢, i.e. the error of the Ritz method, are available it will be
sufficient to bound @ in terms of € resp. €. The aim of this section is the proof of

THEOREM 2: Let oo=N /2 with N #3 and let y3 h < p with y5 properly chosen.
Then
[@F+ 1+ |V S cip?|le—d]i2-1, (5.5)

in case N=3:
@3+ Vel s cp™ (e (5.6)

Firstly we will give the proof of (5 . 5) which is divided into three steps. In order
to control the constants in this section they are numbered. ¢ denotes in this
section an upper bound of the constants in the previous sections. In step 1 we
show the validity of

VOl <c{lle- i1+ [ @]} (5.7)
for o, N arbitrary. Using (5.4) and (3.13), (3.14) we get with x €3, arbitrary
Ivolz < D@ n e d) +efof..,

SD@ p -y (-0, p *O—0)+ (€ -, D) +c||P|2+:. (5.9

Using Schwarz’s inequality (3.16), (3.17) we derive
1 .
VOl =7 Voli+es {[le—dfi-i+ [[ @]}

+HIVR -2 + ot 0= |2us1- (5.9)

vol. 13, n° 1, 1979



42 J. A. NITSCHE

Now let  be an appropriate approximation on u. Lemma 4 with k=0,b=a, and
a= —a+1 gives

[ T PR P LY T 2 YIS S ER T
and because of (2.14) and h/p < 1:
[0 2@ =% | -av1 < ca(W/p){[|®|uss+ [V} (5.11)
In the same way we come to
[V @—n)||-o < cst/p) {||[@]|ss+ ]|V} (5.12)
With the last two bounds (5.9) gives

1
Vol < {z 123 +ed (h/mz} Vol

te{fle—@|2 i+ ]| @]2h1). (5.13)

Now we choose y3=Max(y,, 4(cs+cs)). Then obviously the coefficient of
|| V@||? on the right hand side is less than 1/2 and so (5.7) is shown.

In order to get an estimate for || @ ||,+, we introduce an auxiliary function w
defined by

—Aw=p"*"1® in Q,}

5.14
w=0 on 0Q. ( )

Then with any y €38, we have
|@2+: =D (@, w)=D(@, w—x)—(e— D@, w—x)+(E—D, w). (5.15)
In step 2 of the proof of (5.5) we will show

@31 = ert/p){[|@]2s + [[VO2}

Follwftuss +es (148 [E-02s (5 10

with 8 > 0 arbitrary. The two terms with 3 come from
o . 1,. .
E—, w) S[[e—®lamr||w]|-ar: =8]|w]|Zass +4—8||s—q>||3_1. (5.17)

With x chosen properly next we have

D@, w—yx) S| VO] Vw—2)||-o || VO ch?|| VP w| - (5.18)

Firstly let us consider the case N > 4. Then we have to apply lemma 7. Since

R.A.1.LR.O. Analyse numérique/Numerical Analysis



L,,-CONVERGENCE OF FINITE ELEMENTS FOR PARABOLIC PROBLEMS 43
then —a+2= —N/2+2is negative part (i) of lemma 6 can be used. In this way
we get

D@ w—y) < co | VO { W/P)]|@lass +H|| V0| ara}.  (5.19)
An essential aid is the next lemma the proof of which is given in the appendix:

LemMMA 8: Let N = 4dand =N /2. For w defined by (5 . 14) the a priori estimate
”V10||2—a+2 = Co P_4“(D“.3+1 (5.20)

is valid.

Obviously the right hand side of (5.19) is bounded by that of (5.16).
For N=4 we have by lemma 7' —note a =2 in this case:

W || V2w||-o £ c(h/p)|| @ |las 1 +ch?||Vw]|. (5.21)

Applying lemma 8 also here shows that the term D (®, w —y) is bounded by the
right hand side of (5.16). Finally for N=2 lemma 7' gives directly

D(CD,W—X)é“V(Dlluc(h/P)”q)“uﬂé%c(h/p){llv(l)”f+H(I)Hfﬂ}. (5.22)

It remains to bound the middle term in (5. 15).
We have
G0, =) S [[E= s 0= [-ae s (5.23)
and
=% [|-ass < k|| VP 0|-ars < ch? ||V w0]| (5.24)

With the help of the bounds given above for || V* w]| —, we see that this term is
bounded in the same way by the right hand side of (5. 16).

In step 3 of the proof of (5. 5) we apply a lemma which also is proved in the
appendix.

LemMma 9: Let N=2, o.=N/2. Then for any we H, n H,:
lwl|2ar1Sersp 2| Aw|| 2o (5.25)
For w defined by (5. 14) this gives
lw||ZeriSeis p™2|| @241 (5.25)
Therefore we may rewrite (5. 16):
@i {erh/p)+eridp~? H{[[@|Zea + [V OIZ}
+eg(1+37Y)||e—@|2-; (5.27)
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44 J. A. NITSCHE

and compare this with (5.7). If

{er(h/p) ey 8p~ 2} {14¢ ) <1 (5.28)
then ||®||.+, and ||V@]||, are bounded by || —®||,—,. We may choose
5=p*{dc, (1+)} ! (5.29)
and v, h<p with
Ya=Max(ys, 4¢c,(1+4c¢3)) (5.30)

to guarantee this. In this way (5.5) is proved.
Now we turn over to (5.6) of theorem 2. We have already

[veli<e ([li-o|+ o) (5-31)
since the power o was not restricted in step 1. Similar to above we define w by

—Aw=p"2® in Q, }

5.32
w=0 on 0Q, ( )

and get now — using lemma 7'
|@|5=D(@ w—x)—(E—®, w—x)+E—D, w)
ch? || Vo[, [|Vw] - +[[e—@[[{[lw] +h* [V wl]}
<cra /o) [VO[ @2 +erallé—b ] ] +@ip) @]} (533

In the analogue way (5 . 6) is then proved with the only difference that instead of
(5 .25) now the following lemma — see appendix —has to be applied.

Lemma 9': Let N=3. Then for any wel-il1 NH,:
|w*scp™ || Aw]|2,. (5.34)

6. ERROR ESTIMATES IN WEIGHTED NORMS
Theorem 2 gives in case N =2,3:

[@flz=co™ ™ {{|@f*+]e*}. 6.1)

Since by differentiation of (5. 5):
@, +D@® x)=Ex) for yes, (6.2)
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we get putting x =® and integrating

Jea o) 2 [ elo)a 6.3
0
and therefore by Gronwall’s lemma
t
ol se{ o+ [ o) 6.4
0

Since our initial condition —see (5.3) and the remarks in the introduction
regarding the choice of the initial value of u, —is

©(0)=0 (6.5)
x=®(0) in (5.4) gives
|| ®©)]|>=((0), ()< ||e(0)||>. (6.6)
Therefore we can rewrite (6.4) in the form
101 cose el wat 1Elnant 6.7)

In connection with (6 . 1) we have shown — note that L, (a) is the L, (0, T) norm
of ||.|:

TuroreM 3': Let N=23. Then

Hq’“fwtzé‘?p_ﬁlv{“é“fzwz}'{' ”é“i(Lz)}- (6.8)

In the case N =4 the (o —1)-norm of ® in (5. 5) still is a weighted norm which
has to be discussed further. The structure of the defining relation of ® and ® is
the same. Therefore we will work with ® firstly and show

THEOREM 4: Let N=4 and B=(N/2)—1. Then
t
o= looli+e [ [ldx 6.9
0
Now we will apply this with ®, € replaced by @, . Further we have — the proof
is given below.

LeEMMmA 10: Let ®(0)=0 and a, N arbitrary. Then

|®©O)|2=c]|e@] 2. (6.10)

With the help of (6.9), (6.10) theorem 2 leads to the counterpart of
theorem 3'.
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THEOREM 3: Let N=24, a=N/2 and B=o—1. Then
@2, wenScp™2{]|# 25} 6.11)

Proof of lemma 10 :We take

LetlE

x=Pu(n*®(0) (6.12)
with P, being the L,-projector in (5.4):
|©©0)]|2=@(0), )= ~D@(0), N+E©), ) < ||2O) [la]|x]| 0. (6.13)
Because of theorem 1 we get
2l -osclu= ]| =c| 0O 614
Proof of theorem 4: We start with the identity —y € 3, is arbitrary
(@, ©)p+D (@, p P ®)=(d, p PO —x)+D(®, p P DY)
—(E& p PO—y)+(, D). (6.15)
The choice y =P, (1" " ®) causes that the first term on the right hand side
disappears. Further in our case of B (3 :10) gives

1
D@, p " ®)=||VO[F+ NN =25 p*|| @ |[§:. (6.16)

Therefore with the special y:
(@, @)+ ||V +kp?||@|F2
=D@, p PO—y)—( p PO—y)+(c, D). (6.17)

Now lemma 4 with b= —a=p and k=0resp. k=1 in connection with theorem 1
gives

VW P@—0)||-p=ch™ {h"|[@][gsm+h? ||V ®|p+1 ]
<ch' 5 (h/p){p||@|p+2+||VPO|s}. (6.18)
In this way we get for the first two terms on the right hand side of (6.17):
D@, p PD—x)+(e, p P DY)
e/ {|Vols+hlElls} (| VOlls+pll @z} 6.19

In the way analogue to the proof of theorem 2 — see especially (5 .27)— we get
with ys h<p and ys =7, chosen properly

@ O+ [VOli+o ol sc s+ o3} .20
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respective
d . .
Llow|3=2. dp=c{leli+|ol3}- 621

Then Gronwall’s lemma gives (6.9).

7. POINTWISE ERROR ESTIMATES
Up to now we had conditions on p of the type v; i< p. Now we fix p=ysh.
Let t€[0, 7] be fixed. There is an Xx=x,€Q such that
O, =% 01, (7.1)

We identify x, entering p (1 . 2) with this X. Further let Ae T, be the simplex (or
one of the simplices) with £€A.

The function @ restricted to A is a polynomial of degree less than m, i.e. an
element of a finite dimensional space. Therefore any two norms are equivalent.
Because of the x-regularity of A there is a k=k (N, m, ») such that

o)z i{n™ ﬁcb 0. 7.2

Since xq €A we have in A:
ViR Sps(yi+nd)h? (7.3)

and therefore with aa=N/2:

h‘NJ I@zdxgcpzjJu‘““d)zdxécpzud)”fﬂ (7.4
A A

resp. combining (7. 1), (7.2), (7.4):
(@@, Scpl|@E)]|a+ (7.5)
With the help of theorem 3 we deduce for N =4 with f=N/2—1:

@l wosclllel et 1E]l e} (7.6)

In case N £3 the same arguments give —see (7.4):

i | foraxsert | furoraxzer ot @)
A A
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Because of theorem 3’ (7. 6) is valid for N <3 with f=0.

At the end the weighted norms may be replaced by L,-norms. The factor p~*
is L integrable for g< N /(N —2). Since then q' defined by g ' +¢'~'=1is
greater than N/2 for any p>N:

[olls=c

A

L, (7.6)
In this way we get
THEOREM 5: Let p=2 for N<3 and p> N for N=4. Then
@]l co=cillel e+ €l (7.9)
Scott [14] and Nitsche [10] gave the error estimates for the Ritz-method
lel| o =u—Ruull,, < ch*||ul]y: (7.10)
for k<m. Because of e=u—u, =& —®—see (5.3)—we have the final result :

THEOREM 6: Assume the reqularity of the solution u of the initial-boundary value
problem (1):
() ue L, (0, T, Wi(Q);
(i) ue L, (0, T, WX, (Q));
(i) aeL,(0, T, Wk, (Q)).
Then the error e=u—u, between the exact solution u and the Galerkin

approximation u, defined by (2) is of order h* with k <m —the order of the finite
elements used.

REMARK: For N <3 the regularity assumptions on u, i can be lowered:
ueL,(0, T, W5(Q), 1eL,(0, T W5(Q)
is sufficient.
RemArk: Having theorem 5 in mind one would expect assumptions of the type:
(i) ue L, (0, T, Wk(Q));
(iii') G L, (0, T, WE(Q),

instead of (ii), (iii) of theorem 6. As was pointed out by Scott the estimates (7. 10)
togehter with the L,-bounds

lellz = ch||u]

" (7.11)
do not imply

el sch[|u]

e (7.12)
This is the reason for the formulation with L, -norms in theorem 6.
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The convergence rate up to h™ is optimal with respect to the power of A.Butin
order to get this bounds for the second time derivative are needed. We can get
from (6 . 9) a reduced convergence result but without needing €. With @ (0)=0 we
have

]

ro=c|éle (7.13)

For B=N/2—1now c¢||®|| is an upper bound of k|| ®||,_if x, (1.2)is chosen
properly. This gives

THEOREM 7: Let N=3 and p>N. Then
@] cnsch™ |e]|rq, (7.14)
The counterpart of theorem 6 is then

THEOREM 8: The error of the Galerkin approximation is of order h*~ ' (k<m)
provided the regularity assumptions

(i) ue L, (0, T, W5 " (Q));
(i) ue L, (0, T, W (Q)),
hold.

8. APPENDIX : PROOF OF LEMMATA 8, 9

For bounded domains Q'S RY let

l(Q’)=sup{“ﬂ)ﬂ2;L2—ﬂ weHl(Q’)mHz(Q’)} @.1)
[Aw]Ze-1 .0
and

A(Q’)zsup{%r% wefIl(Q’)mHz(Q’)}. 8.2)

Because of the definition of w (5.14) lemma 8 is proved if we can show
A(Q)<cp~*. Firstly we consider the case N >4. Then —a+2 is negative and
lemma 6, (i) gives

M) SE{A@)+p *}, AQ)Sk{MQ)+p %} (8.3)

with kindependent of Q'. Obviously A is monotone in Q',i.e. A(Q) <A (Q") for
Q'cQ”. Next let K =K(x,) be a sphere of radius R =diam (Q) with center x,.
Then Q<K and hence A(Q)<A(K). The supremum A (K) is attained for a
positive function wy with — Awy >0 because of the maximum principle, and wy
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solves the eigenvalue problem

AT Aw)=A"'w 3w in K, }

8.4
w=Aw=0 on 0K.

Without loss of generality we can assume wy =wy (¥) with r= | x—xol since p
depends only on r, for otherwise the spherical average of wy solves the same
eigenvalue problem and is also positive. Therefore we can restrict the space of
admissible functions without changing A:

with Ve=H, (K)~ H,(K)n {w|w=w() }. Now with lemma 6, (i) we get

weVK} 8.5)

MO=Zk{p *+A(K)} ék{p"‘%—sup{” G| B eVK}}. (8.6)
[Aw][ -am1x
Functions we V' have the representation (w' =dw/dr):
w’=7'1‘Nj s¥ 7 Awds. 8.7
0
Schwarz’s inequality gives
|w'|2 <™ 2”7’(7)[ Nttt Aw |2 ds (8.8)
Jo
with
r “N=2N for r<p,
_ N-1 —a1 oo p ‘
s Ls b s-c{ 02 for rap, 8.9)

because of a=N/2.
Therefore

“Vu/“ —a+2. K—kj peo 21“/ 'Zd"
0

R r
ék\[ rl—Nua—MZf(r)er SN—luaJrl‘Aw'st
0]

0

R R
zkjos‘v'lu““’Awlzds [ P2 f () dr

R
<k Awl|z,_,. KLr‘"“’qu(r) dr. (8.10)
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The last integral is bounded by ¢ p~*. This completes the proof in case N >4.
For N=4 without using lemma 6 we directly consider the supremum of
| Vw||?/||Aw]||% 5 and get the same result with the same arguments.

Proof of lemma 9 : The proof follows the above lines. In the definition of &, A we

replace the indices of |V w|| resp. ||w|| by —o resp. —a+1. Then —a=N/2 s
negative. Up to formula (8.9) nothing is changed. But then

R R
”le|2_°“sz PN | w'|? dr g]lAwHZ_u_LKJ N f(r)dr (8.11)
0 0

and the last integral is bounded by c(1+R?p~?)<c'p~ %
The proof of lemma 9’ is analogue to the preceding one and is omitted here.

There is an interesting remark to be added. In (8. 1) resp. (8.2) the (—a +2)-
norm of the first derivatives resp. the (—a+ 3)-norm of the function itself is
compared with the (—a — 1)-norm of the second derivatives. Roughly speaking
each differentiation in weighted norms may be considered as reducing the
weight-power by one. Then || Vw/|| _,+, and ||w]| .+ would be something like
| Aw|| -+, Since this is compared with || Aw|| _,—; the behavior A, Axp~* is
“understandable”. Of course this “rule” is only valid for special o and has to be
checked in each case. Just lemma 9 is an example that it may be violated.
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