3. Approximation Theory in Hilbert Scales

In the following mmnm denotes a Hilbert scale as
discussed in the preceding section. For simplicity we will
restrict ourselves to ¢ € {0,1] =: I . Further, let S8
denote an appropriate 'approximation space'. Similarily
for simplicity we assume 8 < mH . Given an x mnot in 8

we may ask for

(3:1) d(x,8) = dist (x,8) = inf |x-g|| .
ges

In our case the norm may be any g-norm. Moreover, one asks
not only for the approximability of one speclial element but
of a whole class of them. In the applications this is
characterized by a condition =x ¢ mw with some index g .
Since

(3.2} a(ax,8) = || 4(x,3)

the distance is to be compared with the norm of x . There-

fore the smallest constant g = xgm is sought such that for
all x ¢ mm

- =
(3.3) ot x-glly = nq Hxllg

holds. This is given by

(3.4) =, . = mmvﬁHSw llx-5il Ix € Hg A llxll = Hw .

af £e3
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of course, u is only defined for g = 8 , otherwise they

o8
are + o , Because of Lemma 2.2 we get

Lemma 3.1: is monotone nondecreasing in the

*a8
first and nonincreasing in the second argument.

We will show & number of relations for g

concernin
o8 g

different indizes. The first is

Lemma 3.2: Let a < 8 < y . Then

(3.5) -

Proof: Since 8 1is a linear subspace we have for n € S

arbitrary

(3.6) inf |lx-m-gll = inf [x-gf|
£€8 EeS

and therefore

3:7)1nf xeglly = xgg Boonlly

Now we may choose #« sSuch that

(3.8 lx-nll, = inf flx-gll; = ug =x=< . #

EE€S

The lemma may be interpreted in the following way: Let
a,B,y be given with 0 =g <8 <y =<1 and let x € mu

be fixed., Then there are elements wpwwm.w< € S such that

x-g Ml
(3.9) Ix-84ll

I=-g lly

Up to now there is

last inequalities

B

IA

1A
x

A

K08 xm< :N:w .

no indication whether or not in the two

equals € . Without doubt the

g v

niestion of simultaneous approximability is of special

interest. The essential key is

Lewma %.3; Let vy

define

sefore provin

The introductions

{3.12) inf |jx-
E€S

aﬁ
be fixed with 0 < v € 1 and

1/(1-v)

XHX{_H

+ w¥lbegll } = o kel

2 the lemma we remark the following:

of % has a 'rescaling' reason. We have

e, = x|

Now the lemma guarantees the existence of an element

£ € 8 such that

lIx-£ll,

lIx-£ll,

1A
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3.4

Looking at the definition of xpm we have at once

(3.14) Koy = C K

and a certain ‘'almost' best simultaneous epproximability
in the 0- and the y-norm. Moreover, with the help of

Lemma 2.3 we get

Corollary 3.4: Let u be defined by (3.10). Then

there is a € € § such that simultaneocusly

5

(3.15) R
holds true for 0 =g =y .
An obvious (weaker) conseguence is

Corollary 3.5: Let y De given with 0 <y < 1 .

Then for all® 8 with 0 <8 S y

(3.16) Kg = xhh-mvxﬁw-<v

Proof of Lemma 3,%: TLet us define

(3.17) E(x) = inf{|x- Y%
%) = tor{ilx-gl, + w'lx-5ll }
and
(3.18) ey = msvﬁmﬁxu_x €H Al <1}
We have

(3.19) E(x)

IA

ey I,

ol
:
(1]

%

Since - see (3.6) -
(3.20) E(x) = E(x-n)
for any m € 8 this gives
\ - ’
(5.21) E(x) < e fxenll,

With the help of (3.12) we come to

(3.22) B(x) s e Y lxll,
and hence
(3.23) g, & o onY

.23) 158y "

We will need a second relation combining £y and m< :
In order to get this we verify that the two propositions

hold 4

Proprosition 3.6: The functional E 1is subadditive,

l.e.

(3.248) mﬁNH+xmu = thHu % mANmu ‘

This follows easily from the definition of E(.) , it is

comparable with the triangle inequallity in factor spaces.

Proposition 3.7:

(3.25) E(x) s fIxlly + oY U=l -

Thls is obvious since £ = 0 belongs to 5 , see the

definition of E(.) .
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The final step in the proof is done by applying

Lemma 2.4: Let x € m< be given., Then there is a

Yy € mw according to

-yl = ¥ ll=ll, s
(3.26 '
3.26) eyl = el .

Ixlly = &l
We get
E(x) = E(x-y) + E(y)

(3.27) s lxeyll, + wYllx-yll, + ellvl

= {oY 4 nY 4 oV} Il
and
(3.28) e, =t 4 kY 4+ g 4

We remark that t© > 0 is arbitrary. We replace

(3.23) by (3.28) and come to
(3.29) € = e XY 4 on s nmﬁx\ﬂvpi< e
The cholce t = g o1/ (1-y) glves

(3.30) 6 S xﬁm,\\ﬁiv + ww + g f2 .

in

A
-~

%

The figure will illustrate the 'meaning’ of

Corollary 3.4

B

By rescaling we will mmw a mOﬂWmmﬁo:gmmm approximation
result for an interval [e¢, ¢] which is given only in the
graphical representation

#mun
— S

- —

/
O

£ b C
aﬁm-w
By the lemma the simultaneous approximability in the
g-norm for all 0 <8 <y of an element in H, is
mcwdmncmm&‘vws<wmmn the approximabllity in the y-norm 1s
known. The next lemma will show that then also bounds for
the approximability of elements of the spaces mm with

0« f <1 follow

Lemma 3.8: For vy € (0,1) fixed let wn be defined

by (3.12). Further, let § €& (0,1) and g, o be

such that
(3.31) 0<g<a=min (y,8) .

To any X € mo there is a £ € S according to
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(3.32) Ix-sll, < e w®% lIxll,  for aelaa] -

Proof': Let x € ma be given. By Corollary 2.5 - with

t = u - we know the existence of a y € mH according to

=x|<=m = xm|m=x=m for 0=<pg=b& |,
{3.3%)
Ivll, =« -

By Corollary 3.4 to y there exists a & € S with

(3.38) ly-gll, s ¢ x'Plyl, for osp=y .

Then we have for all a € [g,0]

lx-gly s eyl + ly-gll

A

(3.35) xS %xlly + e w0yl

A

(1+c) #8579 Iy .

Similar to above we illustrate Lemma 3.8 in case of

arbitrary intervals only graphicelly by two figures

taking into account the cases y < § and y > §

Q b a d
eﬁg-v

The counterpart of Corollary 3.5 1s the conseguence of

Lemma 3.8

Corollary 3.9: Let vy,8 € (0,1) be fixed. Then
for all B with O = g < min (y,5)

(336 xgy s wl3-8/0-0)

Up to now we have considered one approximation
space S and have derived some relationships between

the approximation-quantities | for gdifferent

1
“ap'!
indizes ,B . Now we will lock for a sequence *msw
of such spaces, Tn the applications the dimension of

m: will be finite. For simplicity we will assume

(3.37) dim (8) = n

with n = 1,2,... . Of course, the modifications in case
of n = NysNpsees with 3u - oo are obvious. We will

denote by xﬂmmmsv the quantities g (3.4) in case

a8

Within certain limits the dimension of an approxima-
tion space is the measure of work, computing time etec.

needed for solving a special problem. Now let us think



He10
of two approximation spaces mH. mm of the same
dimension. From the viewpoint of approximation theory

1

we will prefer for instance the space 3 if - roughly

speaking - an element x will be approximated ‘better’

by elements of mH e

instead of 8% . In our setting we
want to compare the guantities xnmﬁmzw for different
spaces md of the same dimension, and of course for

different values of a,B .

In this context the 'best' or 'optimal' spaces ms

are such that - fixed the indizes gq,B =~

(3.38) hap(Sa) = IE  ng(8)

The right hand side

(3.39) dig t= inf  sup dnf [x-g]l /lxll,
dim S=n Hmmm €S

is called the n-dimensional dlameter of the unit ball

of mm in the space H_ . The formulation is self-

o
expressing

Definition 3.10: Let 0 =g < B =1 be fized.

A sequence *maw is called (a,B)-quasi=-

optimal if

n
(3.40) rog(Sy) = ¢ dlg

with a constant c¢ independent of n .

A

AN
.

In our case of a Hilbert scale the diameters

are glven by

Theorem 3.11: Let fH ] bve a Hilbert scale as

a

discussed in the preceeding section. Then

for o =¢

11y n _ . {e-8)/2
(3.41) d ‘a1

Proof: It is to be 'expected' that the space of the 'n

first eigen-elements

. 3
(3.42) E = mm*ew.emu..._efw

will be the optimal subspace, independent of @.8 .

et P be the orthogonal projector ontc E with

n
respect to the O-norm

“_w_nk.,wd Px &

n mewa _Gu.

Ll i =

For any X € zm we have with g = P

and the abbreviation x; = AxuemJ
o

(3.54) X -~ &= :Mw Xy
and hence

o

Iegly = 5 A$

o8 5 .8 .2

(3.45) S Norq SWH Ay X5

Qam:m
S Ayt rx=m

21

n

X € mz - see (2.5) -

-
ey



This lnequelity shows that the n-dimensional diameter is

bounded by the right hand side of (3.41).

Now let mz be a fixed subspace of mp with

dimension n and let mwu_u =1,...,0} Dbe a base in

ms i Rl
(3.46) 8, = p{¥ . Y0000 R}
In the space HD+H there is an element x orthogonal

to m: with respect to the g-norm: Put X = I Xy @y
The orthogonallty means

n+1
(3.47) Hmw rw xifkuv =0 for j=1l,...,0 .
These conditions are n 1linear equations for the n+l
variables wxM_ . Hence there exists a nontrivial

solution ~Nm~ resp. an element x € E  , orthogonal

to S, with x #0 .
Because of the orthogonality we get

(3.48) inf  |x-gf| = (Il :
ges, % ¢

But we have

o n+1 o 2
2 :Q. 2 HM y.“_. vnu.
n+1
o~ 8 p_2
(3.49) * e oM E
. 2
=285 Il : ¥

2l
Now 1t is easy to show |
Theorem 3.12: Let for v € (0,1) the sequence of
approximation spaces _m:ﬁ be (y,1) quasi-
optimal. Then they are also (a,B) - quasi-
optimal for all pairs (o,B) with a < B,
oSy B51 .
Proof: The (y,1)-quasi-optimality implies
R o (1-y)/2
(3.50) B = x<pﬂmzu S
with ¢ 1independent of n . By the above lemmata we
have for indices within the given range
n (a-B)/2
(F51) og e C iy 3 #

Up to now we have discussed In this section the

'approximation-quantities' {x__} . Analogue to them

oB
‘inverse-quantities' play a vital role: Let S be a
finite muam:muosmw subspace of my (similar to above we
will restrict ourselves to spaces mg with o € [0,1]).
Since any two norms in S are equivalent - see (A, ) -

there are finite constants g with

. : & .
(3.52) lellg <o, o llel, for & es
Because of Temma 2.2 we have

(3.53) g <1 for 8

IA
e



3,1k

Therefore only the case g < B 1is of interest. Since the

embedding H_ - mn is compact we expect g tending

g
to infinity for a seguence |[S

0.8

ol with n - e,

In the remalnder of this section we :WHH firstly prove
some relations between the g¢'s for different indices, then
we will discuss lower limits of the g's and finally combine
the g's with the n's discussed in the first part of this

section.
The counterpart of Lemmata 3.3 and 3.8 is

Lemma 3.13: Let S cH be fixed. Further let vy

1
with 0 < y < 1 be given. If

(3.54) lely = o™ Jel, for ges
holds true then also
(3.55) Ml =" P el for e

for all pairs (a,8) according to 0 =g <8 <1

end g =<y .

Proof: We will apply Lemma 2.3. We get for the triple

Aﬂ.u duuv
l-q -y y-0
(3.56) lelly™ = lell,™ sl .

With the assumption (3.54) of the lemma we get further

A
Q

1= -{1-y)(1-g) 1-a
lejl-e VHi-a) gyl

(3.57)

- Gln.ulzx,_:..ﬁ.M __W:M.ie.‘

v-a
I
Multiplying this inequality by mm=w|< and teking the
power ~(1-vy} glves

~{1-a)
(3.58) llell, =" e .

This 1s the lemma in case of 8 =1 . For g<8 <1

we have by Lemma 2.3 and (3.58)

1+
s} e

A

hslg™® nel§e

{3.59)

A

Ql.ﬂwlndnmnﬂd __m___wxla. . !

Similar to above the two figures will illustrate

Lemma %.173.

gv!

Oy
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3.16

Corresponding to (3.38,39) and Theorem 3.11 we

have

Theorem 3.14: Tet g « 8 and n = dim (8) .

Then

(3.60) 5, 5 & RLPWE

0.8

Proof: In S there is an element orthogonal to E -

see (3.42). Then the representation

o0
Au.m_.v g = z ﬂ“_. nn.m
n
gives
2 T g 2
= IAf &
B-0l o ;G 42
(3.62) kg T8
> A2 g2

which proves (3.60), In case of 8 = E, we have equality in

(3.60). #

o~

Now let _muu F Mmau be two sequences of sub-
spaces of Hy with n denoting the dimension of ms

and ma . By Theorem 3.11 in connection with the definition

of amw and Theorem 3.14 we have

(3.63) xnmﬁmsw nnmﬁmn+pg =1 "

el

We will give a direct proof of this inequality without

using the fact that the norms belong to a Hilbert scale.

~ —_—

Since the dimenslon of mz+H is greater than that of 8

there 1s an element M € mr+~ with £ # 0 orthogonal

o m: in the metric of mﬁ and therefore - see (A. )
61 e = ||g .

(3.64 inf Je-gfl = gl

ges,

This leads to

= : 1l w
xgmﬁm:g = sup4inf || w:n | x e Hg A :xzm = ww
€S

(3.65)
Izl

= B

I,

resp. for this element of mr+p
& -1
(3.66) Iglly = {xgg(s)} ™ lgly -

With the definition of «o (3.52) the inequality (3.63)

aB
is shown.

Inequality (3.63) is important for the following

reason: Let for one sequence {S respective {S,] be

"
known the approximation quantities mxpm«msuw resp. the
inverse quantities maamﬂmsu“ . The lower bounds for the

other quantities are known by (3.63).

7

n



Our last result treats the case when the g's ‘and

w's are in 'balance':

Theorem 3.15: ILet mma_ 5 mmr_ be two sequences

as discussed above and assume for some pair (a,8)

fixed with g < B

~

(3.67)  ngg(Sy) 0pq(8,,,) s M
with & constant M independent of n . Then
~{p-a)/2
(3.68) Hag(Sy) = Mgt ,

i.e. the sequence {8 | 1is (a,8) - quasi-

n
optimal.

Proof: (3%.68) follows directly from (3.67) in connection
with (3.60). The importence of Theorem 3.15 lies in the
fact that the guestion of quasi-optimality may be answered

without any explicite knowledge of the eigen-values ) .



