3. Approximation Theory in Hilbert Scales

In the following $\{H_{\alpha}\}$ denotes a Hilbert scale as discussed in the preceding section. For simplicity we will restrict ourselves to $\alpha \in [0,1] =: I$. Further, let S denote an appropriate 'approximation space'. Similarily for simplicity we assume $S \subset H_1$. Given an x not in S we may ask for

$$(\mathfrak{Z}.1) \qquad \qquad \mathrm{d}(\mathtt{x},\mathtt{S}) = \mathrm{dist}\ (\mathtt{x},\mathtt{S}) = \inf \ \|\mathtt{x} - \xi\| \quad .$$

In our case the norm may be any g-norm. Moreover, one asks not only for the approximability of one special element but of a whole class of them. In the applications this is characterized by a condition $x \in H_8$ with some index 8. Since

$$(3.2) d(\lambda x, S) = |\lambda| d(x, S)$$

fore the smallest constant $n=n_{\alpha\beta}$ is sought such that for

the distance is to be compared with the norm of x . There-

all x & H_B

$$(3.3) \quad \inf_{\xi \in S} \|x - \xi\|_{\alpha} \le \kappa_{\alpha\beta} \|x\|_{\beta}$$

holds. This is given by

$$(3.4) \quad \text{$\mathcal{H}_{\alpha\beta}$} := \sup \Bigl\{ \inf_{\xi \in S} \left\| x - \xi \right\|_{\alpha} \left\| x \in H_{\beta} \wedge \left\| x \right\|_{\theta} = 1 \Bigr\} \quad .$$

Of course, $\kappa_{\alpha \beta}$ is only defined for $\alpha \le \beta$, otherwise they are + ∞ . Because of Lemma 2.2 we get

Lemma 3.1: $\kappa_{\alpha\beta}$ is monotone nondecreasing in the first and nonincreasing in the second argument.

We will show a number of relations for $\varkappa_{\alpha,\theta}$ concerning different indizes. The first is

Lemma 3.2: Let $\alpha < \beta < \gamma$. Then

(3.5)

 $\overline{\text{Proof:}}$ Since S is a linear subspace we have for $n \in S$ arbitrary

and therefore

$$||x-y||_{\alpha} \leq ||x-y||_{\alpha} \leq ||x-y||_{\beta}$$

Now we may choose n such that

$$||x-\eta||_{\beta} = \inf_{\xi \in S} ||x-\xi||_{\beta} \leq \kappa_{\beta\gamma} ||x||_{\gamma} .$$

The lemma may be interpreted in the following way: Let $\alpha,\beta,\gamma \ \ \text{be given with} \ \ 0 \le \alpha < \beta < \gamma \le 1 \ \ \text{and let} \ \ x \in H_1$ be fixed. Then there are elements $\xi_{\alpha},\xi_{\beta},\xi_{\gamma} \in S \ \ \text{such that}$

 $\|x-S_{\alpha}\|_{\alpha} \leq \kappa_{\alpha\beta} \|x\|_{\beta}$

$$\|x-\xi_{\gamma}\|_{\alpha} \leq \kappa_{\alpha\beta} \kappa_{\beta\gamma} \|x\|_{\gamma}$$
.

Up to now there is no indication whether or not in the two last inequalities ξ_{θ} equals ξ_{γ} . Without doubt the question of simultaneous approximability is of special interest. The essential key is

Lemma 3.3: Let γ be fixed with $0 < \gamma < 1$ and define

(3.10)
$$n = n_{\gamma}^{1}/(1-\gamma)$$

nen

$$\inf_{\xi \in S} \left\{ \|x - \xi\|_{0} + \varkappa^{\gamma} \|x - \xi\|_{\gamma} \right\} \leq c \varkappa \|x\|_{1}$$

with
$$c = 2\{1+2^{\gamma/(1-\gamma)}\}$$
 .

Before proving the lemma we remark the following: The introductions of x has a 'rescaling' reason. We have

(3.12)
$$\inf_{\xi \in S} \|x - \xi\|_{\gamma} \le \kappa^{1-\gamma} \|x\|_{1}$$
.

Now the lemma guarantees the existence of an element $\xi \in S$ such that

$$\|\mathbf{x} - \mathbf{g}\|_{0} \leq c \times \|\mathbf{x}\|_{1}$$

(3.13)

$$\|x-\xi\|_{\gamma} \le c x^{1-\gamma} \|x\|_{1}$$

5

Looking at the definition of $\mbox{\ensuremath{\mbox{$_{\alpha}$}}}_{\beta}$ we have at once

$$n_{o1} \leq c n$$

and a certain 'almost' best simultaneous approximability in the O- and the γ -norm. Moreover, with the help of Lemma 2.3 we get

Corollary 3.4: Let n be defined by (3.10). Then there is a $\xi \in S$ such that simultaneously

$$||x-\xi||_{\theta} \le c \, n^{1-\theta} \, ||x||_{1}$$

holds true for $0 \le \beta \le \gamma$.

An obvious (weaker) consequence is

Corollary 3.5: Let γ be given with $0 < \gamma < 1$. Then for all β with $0 \le \beta \le \gamma$

$$(3.16)$$
 $n_{\beta 1} \le c n_{\gamma 1}^{(1-\beta)/(1-\gamma)}$

Proof of Lemma 3.3: Let us define

(3.17)
$$E(x) = \inf_{\xi \in S} \{ \|x - \xi\|_{Q} + \varkappa^{\gamma} \|x - \xi\|_{\gamma} \}$$

and

$$(3.18) \qquad \epsilon_{\delta} = \sup \left\{ \mathbb{E}(\mathbf{x}) \, \big| \, \mathbf{x} \in \mathbb{H}_{\delta} \wedge \|\mathbf{x}\|_{\delta} \leq 1 \right\}$$

We have

$$(3.19)$$
 $E(x) \le \varepsilon_{\gamma} ||x||_{\gamma}$

Since - see (3.6) -

(3.20)
$$E(x) = E(x-\eta)$$

for any n & S this gives

$$(3.21) \qquad \qquad \mathbb{E}(\mathbf{x}) \leq \varepsilon_{\gamma} \|\mathbf{x} - \boldsymbol{\eta}\|_{\gamma}$$

With the help of (3.12) we come to

$$(3.22) \qquad \mathbb{E}(\mathbf{x}) \leq \varepsilon_{\gamma} \, n^{1-\gamma} \, \left\| \mathbf{x} \right\|_{1}$$

and hence

$$(3.23)$$
 $\epsilon_1 \leq \epsilon_{\gamma} \cdot \kappa^{1-\gamma}$.

We will need a second relation combining ϵ_1 and ϵ_γ . In order to get this we verify that the two propositions hold

Proprosition 3.6: The functional E is subadditive,

i o

$$(3.24)$$
 $\mathbb{E}(x_1+x_2) \le \mathbb{E}(x_1) + \mathbb{E}(x_2)$.

This follows easily from the definition of $\mathbb{E}(.)$, it is comparable with the triangle inequality in factor spaces.

Proposition 3.7:

$$\mathbb{E}(\mathbf{x}) \le \|\mathbf{x}\|_{\mathcal{O}} + \kappa^{\gamma} \|\mathbf{x}\|_{\gamma} .$$

(3.25)

This is obvious since $\xi = 0$ belongs to S , see the definition of $\mathbb{E}(.)$.

The final step in the proof is done by applying Lemma 2.4: Let $x\in H_\gamma$ be given. Then there is a $y\in H_1$ according to

$$||x-y||_{Q} \le t^{\gamma} ||x||_{\gamma} ,$$

$$||x-y||_{\gamma} \le ||x||_{\gamma} ,$$

$$||x||_{1} \le t^{\gamma-1} ||x||_{\gamma} .$$

We get

$$E(x) \le E(x-y) + E(y)$$

$$(5.27) \leq \|\mathbf{x} - \mathbf{y}\|_{O} + \kappa^{\gamma} \|\mathbf{x} - \mathbf{y}\|_{\gamma} + \varepsilon_{1} \|\mathbf{y}\|_{1}$$

$$\leq \left\{ \varepsilon^{\gamma} + \kappa^{\gamma} + \varepsilon_{1} \varepsilon^{\gamma - 1} \right\} \|\mathbf{x}\|_{\gamma}$$

and

$$(3.28) \qquad \varepsilon_{\gamma} \leq t^{\gamma} + \mu^{\gamma} + \varepsilon_{1} t^{\gamma-1}$$

We remark that t > 0 is arbitrary. We replace ϵ_{γ} in

(3.23) by (3.28) and come to

(3.29)
$$\varepsilon_1 \leq t^{\gamma} n^{1-\gamma} + n + \varepsilon_1 (n/t)^{1-\gamma}$$

The choice $t = \pi 2^{1/(1-\gamma)}$ gives

$$(5.30) \qquad \varepsilon_1 \leq \varkappa \left\{ 2^{\gamma/(1-\gamma)} + 1 \right\} + \varepsilon_1/2 \quad .$$

The figure will illustrate the 'meaning' of Corollary 3.4

By rescaling we will get a corresponding approximation result for an interval [c, c] which is given only in the graphical representation

By the lemma the simultaneous approximability in the 8-norm for all $0 \le 8 \le \gamma$ of an element in H_1 is guaranteed provided the approximability in the γ -norm is known. The next lemma will show that then also bounds for the approximability of elements of the spaces H_{δ} with $0 < \delta < 1$ follow

Lemma 3.8: For $\gamma \in (0,1)$ fixed let w be defined by (3.12). Further, let $\delta \in (0,1)$ and α , α be such that

$$(3.31) 0 \leq \underline{\alpha} \leq \underline{\alpha} \leq \min (\gamma, \delta)$$

To any $x \in H_{\delta}$ there is a $\xi \in S$ according to

3.7

(3.32)
$$\|x-s\|_{\alpha} \le c \|\delta^{-\alpha} \|x\|_{\delta}$$
 for $\alpha \in [\underline{\alpha}, \overline{\alpha}]$

Proof: Let $x \in H_{\delta}$ be given. By Corollary 2.5 - with t = x - we know the existence of a $y \in H_{1}$ according to

$$\|x-y\|_{\beta} \le \kappa^{\delta-\beta} \|x\|_{\delta}$$
 for $0 \le \beta \le \delta$, .33) $\|y\|_{1} \le \kappa^{\delta-1} \|x\|_{\delta}$.

By Corollary 3.4 to y there exists a $\xi \in S$ with

$$(3.34)$$
 $\|y-\xi\|_{\beta} \le c n^{1-\beta} \|y\|_{1}$ for $0 \le \beta \le \gamma$

Then we have for all $\alpha \in [\alpha, \overline{\alpha}]$

$$||x-\xi||_{\alpha} \le ||x-y||_{\alpha} + ||y-\xi||_{\alpha}$$

$$\le n^{\delta-\alpha} ||x||_{\delta} + c n^{1-\alpha} ||y||_{1}$$

$$\le (1+c) n^{\delta-\alpha} ||x||_{\delta}$$

Similar to above we illustrate Lemma 3.8 in case of arbitrary intervals only graphically by two figures taking into account the cases $\gamma < \delta$ and $\gamma > \delta$

b d c

2-5 X

3.9

The counterpart of Corollary 3.5 is the consequence of Lemma 3.8

Corollary 3.9: Let
$$\gamma, \delta \in (0,1)$$
 be fixed. Then for all β with $0 \le \beta \le \min(\gamma, \delta)$

$$(3.36) \qquad ^{8}\beta_{\delta} \le ^{8}\gamma_{1}^{(\delta-\beta)}/(1-\gamma)$$

Up to now we have considered one approximation space S and have derived some relationships between the approximation-quantities $\{\kappa_{\alpha\beta}\}$ for different indizes $_{\alpha,\beta}$. Now we will look for a sequence $\{S_n\}$ of such spaces. In the applications the dimension of S will be finite. For simplicity we will assume

$$(3.37) \qquad \dim (s_n) = n$$

with $n=1,2,\ldots$. Of course, the modifications in case of $n=n_1,n_2,\ldots$ with $n_j\to\infty$ are obvious. We will denote by $\varkappa_{\alpha\beta}(S_n)$ the quantities $\varkappa_{\alpha\beta}$ $({\cal F},4)$ in case of $S:=S_n$.

Within certain limits the dimension of an approximation space is the measure of work, computing time etc. needed for solving a special problem. Now let us think

V 11

of two approximation spaces s^1 , s^2 of the same dimension. From the viewpoint of approximation theory we will prefer for instance the space s^1 if - roughly speaking - an element x will be approximated better by elements of s^1 instead of s^2 . In our setting we want to compare the quantities $\kappa_{\alpha\beta}(s_n)$ for different spaces s_n of the same dimension, and of course for different values of α,β .

In this context the 'best' or 'optimal' spaces $\,S_{n}\,$ are such that - fixed the indizes $\,\alpha,\beta$ -

$$(3.38) \qquad {}^{\aleph}\alpha_{\beta}(S_n) = \inf_{\text{dim } S=n} {}^{\aleph}\alpha_{\beta}(S)$$

The right hand side

$$(3.39) d_{\alpha\beta}^{n} := \inf_{\text{dim } S=n} \sup_{\mathbf{x} \in H_{\beta}} \inf_{\xi \in S} \|\mathbf{x} - \xi\|_{\alpha} / \|\mathbf{x}\|_{\beta}$$

is called the n-dimensional diameter of the unit ball of H_β in the space H_α . The formulation is self-expressing

Definition 3.10: Let $0 \le \alpha < \beta \le 1$ be fixed.

A sequence $\{S_n\}$ is called (α,β) -quasi-optimal if

$$(3.40) \qquad \qquad \kappa_{\alpha\beta}(S_n) \le c \ d_{\alpha\beta}^n$$

with a constant c independent of n .

In our case of a Hilbert scale the diameters are given by

Theorem 3.11: Let $\{H_{\alpha}\}$ be a Hilbert scale as discussed in the preceeding section. Then for $\alpha \leq \beta$

$$(3.41) d_{\alpha\beta}^{n} = \lambda_{n+1}^{(\alpha-\beta)/2}$$

Proof: It is to be 'expected' that the space of the first eigen-elements

$$(3.42) \qquad \qquad E_n = sp\{\varphi_1, \varphi_2, \dots, \varphi_n\}$$

will be the optimal subspace, independent of α,β . Let P_n be the orthogonal projector onto E_n with respect to the 0-norm

$$(3.43) P_{\mathbf{n}} \mathbf{x} = \sum_{\mathbf{1}}^{\mathbf{n}} (\mathbf{x}, \mathbf{\varphi}_{\mathbf{1}}) \mathbf{\varphi}_{\mathbf{1}} .$$

For any $x \in H_{\beta}$ we have with $\xi = P_n x \in E_n$ - see (2.5) - and the abbreviation $x_1 = (x, \phi_1)$

$$(3.44) \qquad x - \xi = \sum_{n+1}^{\infty} x_1 \varphi_1$$

and hence

$$\|x-\xi\|_{\alpha}^{2} = \sum_{n+1}^{\infty} \lambda_{1}^{\alpha} x_{1}^{2}$$

$$\leq \lambda_{n+1}^{\alpha-\beta} \sum_{n+1}^{\infty} \lambda_{1}^{\beta} x_{1}^{2}$$

$$\leq \lambda_{n+1}^{\alpha-\beta} \|x\|_{\beta}^{2}$$

٧. ١.

This inequality shows that the n-dimensional diameter is bounded by the right hand side of (3.41).

Now let S_n be a fixed subspace of H_1 with dimension n and let $\{ \gamma_{\underline{1}} | 1=1,\dots,n \}$ be a base in S_n , i.e.

$$(3.46)$$
 $S_n = sp\{y_1, y_2, ..., y_n\}$.

In the space E_{n+1} there is an element x orthogonal to S_n with respect to the $\alpha\text{-norm:}$ Put x = $\sum x_1^{}$ $\phi_1^{}$. The orthogonality means

(3.47)
$$\sum_{j=1}^{n+1} \lambda_{1}^{\alpha} x_{1}(\phi_{1}, Y_{j}) = 0 \quad \text{for } j = 1, ..., n .$$

These conditions are n linear equations for the n+1 variables $\{x_1\}$. Hence there exists a nontrivial solution $\{x_1\}$ resp. an element $x\in E_{n+1}$ orthogonal to S_n with $x\neq 0$.

Because of the orthogonality we get

But we have

$$||x||_{\alpha}^{2} = \sum_{i=1}^{n+1} \lambda_{i}^{\alpha} x_{i}^{2}$$

$$\geq \lambda_{n+1}^{\alpha-\beta} \sum_{i=1}^{n+1} \lambda_{i}^{\beta} x_{i}^{2}$$

$$\geq \lambda_{n+1}^{\alpha-\beta} ||x||_{\beta}^{2}$$

Now it is easy to show

Theorem 3.12: Let for $\gamma \in (0,1)$ the sequence of approximation spaces $\{S_n\}$ be $(\gamma,1)$ quasi-optimal. Then they are also (α,β) - quasi-optimal for all pairs (α,β) with $\alpha < \beta$, $\alpha \le \gamma$, $\beta \le 1$.

Proof: The (y,1)-quasi-optimality implies

(3.50)
$$\mu_{\gamma 1}^{n} := \mu_{\gamma 1}(S_{n}) \le C \lambda_{n+1}^{(1-\gamma)/2}$$

with c independent of n . By the above lemmata we have for indices within the given range

(3.51)
$$n_{\alpha\beta}^{n} \le c c \lambda_{n+1}^{(\alpha-\beta)/2}$$

Up to now we have discussed in this section the 'approximation-quantities' $\{\varkappa_{\alpha\beta}\}$. Analogue to them 'inverse-quantities' play a vital role: Let S be a finite dimensional subspace of H_1 (similar to above we will restrict ourselves to spaces H_α with $\alpha\in[0,1]$). Since any two norms in S are equivalent - see (A.) - there are finite constants g with

$$(3.52) ||\xi||_{\beta} \leq \sigma_{\alpha,\beta} ||\xi||_{\alpha} for \xi \in S.$$

Because of Lemma 2.2 we have

$$(3.53) \qquad \sigma_{\alpha.\beta} \leq 1 \qquad \qquad \text{for } \beta \leq \alpha \ .$$

Therefore only the case $\alpha < \beta$ is of interest. Since the

embedding $H_\beta\to H_\alpha$ is compact we expect $\sigma_{\alpha,\,\beta}$ tending to infinity for a sequence $\{S_n\}$ with $n\to\infty$.

In the remainder of this section we will firstly prove some relations between the $\sigma's$ for different indices, then we will discuss lower limits of the $\sigma's$ and finally combine the $\sigma's$ with the $\kappa's$ discussed in the first part of this section.

The counterpart of Lemmata 3.3 and 3.8 is

Lemma 3.13: Let $S \subseteq H_1$ be fixed. Further let γ with $0 < \gamma < 1$ be given. If

(3.54) $\|\xi\|_{1} \le \sigma^{-(1-\gamma)} \|\xi\|_{\gamma}$ for $\xi \in S$

holds true then also

(3.55) $\|\xi\|_{\beta} \leq \sigma^{-(\beta-\alpha)} \|\xi\|_{\alpha}$ for $\xi \in S$

for all pairs (α, β) according to $0 \le \alpha \le \beta \le 1$ and $\alpha \le \gamma$.

<u>Proof:</u> We will apply Lemma 2.3. We get for the triple $(\alpha, \gamma, 1)$

 $(3.56) \qquad \|\xi\|_{\gamma}^{1-\alpha} \le \|\xi\|_{\alpha}^{1-\gamma} \|\xi\|_{1}^{\gamma-\alpha} \quad .$

With the assumption (3.54) of the lemma we get further

 $\|\xi\|_{1}^{1-\alpha} \le \sigma^{-(1-\gamma)(1-\alpha)} \|\xi\|_{\gamma}^{1-\alpha}$

(3.57)

 $\leq \sigma^{-\left(1-\gamma\right)\left(1-\alpha\right)} \,\, \left\|\xi\right\|_{\alpha}^{1-\gamma} \,\, \left\|\xi\right\|_{1}^{\gamma-\alpha} \quad .$

Multiplying this inequality by $\|\xi\|_1^{\alpha-\gamma}$ and taking the power $-(1-\gamma)$ gives

 $(3.58) \| \| \|_{1} \le \sigma^{-(1-\alpha)} \| \| \|_{\alpha}$

This is the lemma in case of 8=1 . For $\alpha < 8 < 1$ we have by Lemma 2.3 and (3.58)

 $\|\xi\|_{\beta}^{1-\alpha} \le \|\xi\|_{\alpha}^{1-\beta} \|\xi\|_{1}^{\beta-\alpha}$

(3.59)

 $\leq \sigma^{-(1-\alpha)(8-\alpha)} \|\xi\|_{\alpha}^{1-\alpha} .$

Similar to above the two figures will illustrate

Lemma 3.13.

5.17

Corresponding to (3.38,39) and Theorem 3.11 we

have

Theorem 3.14: Let $\alpha < \beta$ and n = dim(S).
Then

(3.60)
$$\sigma_{\alpha, \theta} \geq \lambda_{n}^{(\beta - \alpha)/2}$$

<u>Proof:</u> In S there is an element orthogonal to E_{n-1} - see (3.42). Then the representation

$$(3.61) \qquad \qquad \varsigma = \sum_{n} \varsigma_{1} \varphi_{1}$$

gives

$$||g||_{\beta}^{2} = \sum_{\lambda} \lambda_{1}^{\beta} g_{1}^{2}$$

$$> \lambda_{n}^{\beta-\alpha} \sum_{n} \lambda_{1}^{\alpha} g_{1}^{2}$$

$$> \lambda_{n}^{\beta-\alpha} ||g||_{\alpha}^{2}$$

which proves (3.60). In case of $S=E_{\rm n}$ we have equality in (3.60).

Now let $\{S_n\}$, $\{\widetilde{S}_n\}$ be two sequences of subspaces of H_1 with n denoting the dimension of S_n and S_n . By Theorem 3.11 in connection with the definition of $d_{\alpha\beta}^n$ and Theorem 3.14 we have

$$(3.63)$$
 $\aleph_{\alpha\beta}(S_n) \sigma_{\alpha\beta}(S_{n+1}) \ge 1$.

We will give a direct proof of this inequality without using the fact that the norms belong to a Hilbert scale. Since the dimension of S_{n+1} is greater than that of S_n there is an element $\widetilde{s} \in S_{n+1}$ with $\widetilde{s} \neq 0$ orthogonal to S_n in the metric of H_α and therefore - see (A.) -

$$(3.64) \quad \inf_{\xi \in S_n} \|\widetilde{\xi} - \xi\|_{\alpha} = \|\widetilde{\xi}\|_{\alpha}$$

This leads to

$$\|\mathbf{x}_{\alpha\beta}(\mathbf{S}_{\mathbf{n}}) = \sup \{\inf_{\mathbf{S} \in \mathbf{S}_{\mathbf{n}}} \|\mathbf{x} - \mathbf{S}\|_{\alpha} \mid \mathbf{x} \in \mathbf{H}_{\beta} \land \|\mathbf{x}\|_{\beta} = 1\}$$

(3.65)

resp. for this element of \widetilde{S}_{n+1}

$$||\widetilde{\mathbf{s}}||_{\beta} \geq \left\{ \kappa_{\alpha\beta}(\mathbf{s}_{\mathbf{n}}) \right\}^{-1} ||\widetilde{\mathbf{s}}||_{\alpha}$$

With the definition of $\sigma_{\alpha\beta}$ (3.52) the inequality (3.63) is shown.

Inequality (3.63) is important for the following reason: Let for one sequence $\{S_n\}$ respective $\{\widetilde{S}_n\}$ be known the approximation quantities $\{\mathbf{n}_{\alpha\beta}(S_n)\}$ resp. the inverse quantities $\{\sigma_{\alpha\beta}(\widetilde{S}_n)\}$. The lower bounds for the other quantities are known by (3.63).

Our last result treats the case when the σ 's and κ 's are in 'balance':

Theorem 3.15: Let $\{S_n\}$, $\{\widetilde{S}_n\}$ be two sequences as discussed above and assume for some pair (α, θ) fixed with $\alpha < \beta$

$$(3.67) \qquad \kappa_{\alpha\beta}(s_n) \sigma_{\alpha\beta}(\widetilde{s}_{n+1}) \leq M$$

with a constant M independent of n . Then

$$(3.68) \qquad \varkappa_{\alpha,\beta}(s_n) \le M \lambda_{n+1}^{-(\beta-\alpha)/2},$$

i.e. the sequence $\{S_{n}\}$ is (α,β) - quasi-optimal.

Proof: (3.68) follows directly from (3.67) in connection with (3.60). The importance of Theorem 3.15 lies in the fact that the question of quasi-optimality may be answered without any explicite knowledge of the eigen-values λ .