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1. We are concerned here with some discrete generalizations of the 
following result of GronwaU [1], which has been very useful in the study 
of ordinary differential equations: 

Lemma (Gronwall). I /  u(t) and v(t) are non-negative measurable 
]unvtions /or t > 0 and Ct o is a non-negative constant, then the inequality 

t 
u(t) < uo + S v(s) u(s) ds (t > 0) (1.1) 

0 
implies that 

t 

u(t) < Uo exp ( S v(s) ds) (t > 0). (1.2) 
0 

Stronger forms of GronwaU's Lemma are produced by replacing (1.1) 
with more general inequalities, which usually fit the form 

t 

u(t) < uo(t) ~- h( ~ g(t, s, u(s)) ds). (1.3) 
0 

Bihari [2] determines an upper bound and Langenho T [3] deter- 
mines a lower bound for u(t) when Uo(t ) is constant, h ( x ) =  x, and 
g(t, s, u) ~ v(s) q(u), where q(u) is a monotone increasing function. 
Lakshmikantham [4] extends the results in [2] and [3] by assuming 
g(t, s, u) ~ q(s, u) and by giving conditions under which u is bounded 
between the maximal and minimal solutions of r ' ( t ) ~  ~:q(t ,r) ,  
r(0) = ]u(0) ], respectively. Further results in this direction with appli- 
cations to ordinary differential equations are given by Braver [5] and 
Lakshmikantham [6]. WiUett [7] has considered the so-called L v case 
(1 < p < -4- co), i. e., the case when h(x) = x l/v, g(t, s, u) = wV(t) u v, 
and all functions are pta power Lebesgue integrable. (See Theorem 1 
of this paper.) 
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The discrete analogue of the result of Bihari [2] was partially given 
by Hull and Luxemburg [8] and was used by them for the numerical 
treatment of ordinary differential equations. In this note we will state 
and prove discrete analogues to the Lp ease considered by Willett [7] 
and to the interesting special case of Lakshmikantham [4] when 
q(s, u) -- v(s) u(s) + w(s) uv(s) (p > o, p # 1). 

2. In the following two theorems we assume tha t  all functions are 
real-valued, non-negative, defined on a given interval I with zero as 
left endpoint, and Lebesgue measurable on I. Such a function x = x(t) 
is said to be locally integrabIe on I if for each t C I, the Lebesgue integral 

t 

x(s) ds is finite. 
0 

Theorem 1. Let the /unctions v(t) uP(t), v(t)wV(t), and v(t) u~(t) be 
locally integrable non-negative/unctions on I. Then the ]ollowing inequality 
/or l < p < oo 

t 

u(t) < uo(t) -b w(t) ( ~ v(s) uP(s) ds) ~Ip (t e I) (2.1) 
o 

implies that 
t 

, ( ~ v(s) ~o(S) e(s) ds) 11p 
( ~ v(s) u~(s) ds) lip < o (t (3 I), (2.2) 

0 - -  1 --  (1 --  e(t)) lip 
w h e ~ ' e  

t 

e(t) ---- exp(-- S v(s) wP(s) ds). (2.3) 
0 

Theorem 1 with v(t) = 1 is proven as Lemma 2.2 in [7]. The case 
for general v(t) follows easily from this case by multiplying inequality 
(2.1) by v~lp(t) and identifying vllP(t)u(t) with u(t). A bound on u(t), 
which is independent of u(t), can be obtained now by substituting for 

t 

( f v(s) uP(s) ds) lip in equation (2.1). 
0 

Theorem 2. Let the /unctions v(t), w(t), v(t)u(t), and w(t) uP(t) be 
locally integrable non-negative /unctions on I. I] u o > 0 and p >_ O, 
p =4= 1, then the/oltowing inequality 

t t 

u(t) <_ uo + f v(s) u(s) gs + S w(s) up(s) ds (t C 1) (2 .4 )  
0 0 

implies that 
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t t 

u(t) e x p ( - -  ~ V(8) (~8) ~ (Uqo -4- q ~ W(S) e x p ( - -  q i V(r) dr) (~8) l/g 
o o o 

(q = 1 - p ;  t e x). ( 2 . 5 )  

To prove Theorem 2, let ~,(t) be defined as the right member of 
(2.4); so 

~o'(t) < v(t) v2(t ) -~ w(t) ~?P(t) ( t e I ) ,  (2.6) 

since p _> 0. By Theorem 1 of [4] we know that  ~p(t) is bounded by 
the maximal solution r(t) of 

r' (t) = v(t) r(t) ~- w(t) rV(t), r(O) -~ %; (2.7) 

and we can solve (2.7) explicitly as a Bernotflli equation. However; we 
need not refer to the result in [4] at  all for this special case, but can 
obtain directly from (2.6) that  

t 

O'(t) < w(t) O~(t) exp(-- q S v(s) ds) 
0 

where 

(q = 1 - p),  ( 2 . s )  

t 

O(t) = F(t) exp(-- f v(s) ds). (2.9) 
0 

Since O(t) > 0 on I ,  we can divide (2.8) by OP(t) and integrate to obtain 
equation (2.5) for all p >_ 0, p ~ 1 (q ---- 1 --  p). 

I f  u0 = 0, then equation (2.4) is valid for all positive constants 
u .  in place of %. By letting u . - +  0 in the corresponding equation (2.5), 
we get that  equation (2.5) as it now stands is also valid when u0 = 0, 
ff we agree to first write the right hand side with a factor u 0 when q < O. 

3. We will prove in this section the discrete versions of Theorems 
1 and 2. 

Theorem 8. Suppose that Uo(n), w(n), v(n - -  1), and u(n) (n = 1, 2, . . .  ) 
are non-negative sequences o /numbers  with v(O) --  O. Then the/ollowing 
inequal i ty /or  1 < p < w 

u ( n + l ) < u o ( n + l ) + w ( n + l ) ( X v ( j ) u P ( j ) )  ~Ip (n=O,  1 . . . .  ) (3.i)  
j=O 

implies that 

(~ v(j) u~(j)) lj" < 
4~0  

where 

(Z v(j) u~(j) e(j) lip 
]=0 

1 --  (1--e(n)) 11p (n = 0, 1, . . . ) ,  ( 3 .2 )  
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e(~) = H (1 + v(r w~(i)) -~ (n ---- 0, 1, .. .). (3.3) 
t=0 

Proo/: The proof is the direct analogue of the proof of Theorem 1 
as given in [7]. Define a sequence of numbers 

k 
~(k) = e(k) ~ v(j)  u~(j) (k = O, 1, . . . ,  n), (3.4) 

j=O 

where 

e(k) --  e(~ --  1) = --  v(k) wP(k) e(k) (~ = 1, 2 . . . .  , n), (3.5) 
e(0) --  1. 

The solution e(k) of (3.5) is given by (3.3). I t  follows from (3.1), (3.4), 
and (3.5) that  

~(k) - ~(~-1) <_ (v~/p(k) u0(~) e~/P(k) § (1 § v(~) wP(k)) ~/p / 

v(k) w.~(k) ~(~ - 1) 
-- 1 § v(k) wV(k) (k = 1, 2, . . . ,  n). (3.6) 

Next, sum (3.6) from/c = 1 to/c -- n, transpose the second sum in the 
right member, form the ptl~ root of both sides, and apply Minkowski's 
inequality for sums to the right member to obtain 

(~p(n) § 2: v(Ic) wV(lc) ~f(]c--1) ) ]~  
k=1 1 + v(k) ~v:(k) 

" ( k ~ l v ( l ~ ) w P ( k ) ~ ( k - - 1 ) ) l "  
(Zv(k) u~(k) e(k)) ~]p § . (3 7) 
~=, _ 1 § v(k) wP(k) " 

Transpose the second term of the right member of (3.7) to obtain a left 
member of the form / ( x ) = ( e §  l l p - x  llp(c~_O, p ~ l ) .  Since 
/'(x) ~ 0 for all x ~ 0, we may replace x by a larger quantity without 
destroying inequality (3.7). In this regard, we note that  

v(k) ~,(~) v(k-1) ~ v(l~) ~p(~) e ( ~ -  1) ~-* 
= z v( j )  up(j) 

k=~ 1 + v(k) wp(l~) k=~ 1 + v(k) w'(k) ~=0 

g X v(~) w~(k) e(k) Z v(j)u p (]) = (1 --  e(n)) Z v(j) u~(j). (3.8) 

(3.2) follows by substituting from (3.8) and (3. r into (3.7). 

Theorem 4. SuTpose that v(n), w(n), and u(n § 1) (n : O, 1, 2 . . . .  ) 
are non-negative sequences o/numbers with v(0)=w(0) ~- 0, and that u o 
and p are constants with u o ~ 0 and p ~ O, p =~ 1. Then the inequality 
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u ( n § 2 4 7  (n----0, 1, . . . )  (3.9) 
i=o i=o 

imTlies that 
}1 

e(n)u(n § 1)~_(u~,{§162 xl~ (q---- 1 - - p ; n - - 0 , 1 , . . . ) ,  (3.10) 
k=0 

where 

e(n) = H (1 § v(j)) -1 (n = 0, 1, . . .  ). (3.11) 

Define a sequence of numbers v2(k ) by the right member P~'oo / : 

of (3.9), i. e., 
k k 

v,(k) = Uo + ~ v(j)  u(j) + ~: w(j) up(j) (~ = o, 1, ...). (3.12) 
~ o  i~o 

Then, 
V(k + 1) --  v2(k ) ~ v(]c + 1) ~2(/c) + w(/r % 1) ~o~(/c), (3.13) 

since u~(k + 1) _~ Vx(/~) for p ~ 0. 

Transpose v(k § 1) ~0(k) in (3.13) and multiply by e(k § 1), where 

e(~ § 1) - e(k) = - v(~ § 1) e(k § 1), (3.14) 
e(0) ---- 1, 

to produce 

~p(k § 1) e(/c § 1) - -  ~0(]r e(k) <: w(lr § 1) eq(]c § 1) [~(k) e(k § 1)] p. (3.15) 

Because ~#(k) is monotone increasing, e(k) is monotone decreasing, and 
q --  1 ~ 0, we know tha t  

[~(k) e(k + 1)] r > x ~-1 

for all values x between ~(k) e(k) and ~(k § 1) e(k § 1). So ff we apply 
the mean value theorem to the function ](x) = xr we see tha t  

[y~(/c § 1) e(/c § 1)] r - -  [~#(k) e(k)] r 

q 
[~#(k) e(]c.{§ q-1 [?(It § 1) e(]c § 1) - -  ~(]c) e(]~)]. (3.16) 

From (3.15), (3.16), and q = 1 - -  p, we obtain 

[~(~ § 1) e(~ § 1)]r - [~(k) e(k)]~ _< w(k § 1) e~(k § 1), 

from which (3.10) follows for all values q ~ 1, q ~ 0 by summing. 

4. Most of the results above have been used in their weak forms in several 
aspects of differential equations, as we have already indicated to some 
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extent.  The corresponding strengthening of  these results m a y  be achieved 

in mos t  cases th rough,  the stronger forms of  Gronwall's inequality.  

To be more specific, the results in [7] and [9] m a y  be slightly improved 

with the  use of  Theorems 1 and  2, respectively, and  Theorem 4 m a y  

be used to extend the discussions given in [10]. Other  applications of  
these results in the  s tudy  of slightly per turbed differential equat ion 

sys tems will be considered in a later  paper. 
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