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The one-dimensional model of the quantum oscillator is considered. The corresponding 

function space is the periodic function on the unit circle. The spectrum of the energy levels of 

the harmonic quantum oscillator is given by the set of eigen-pairs of the Schrödinger 

(energy=Hamiltonian) operator equation 
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The corresponding energy norm is defined by 
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The spectrum of the energy level is given by the eigenvalues and its corresponding excited 

state (wave functions) functions n  defined by 
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The wave function of the ground state is given by the Gaussian function in the form 
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For the eigen-function the following recursion formula is valid 
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The challenge is about the “eigen-functions” of the momentum operator: Those are plane 

wave  
ikx

n ex )(  

 with eigenvalues   

                                                                     kp        (de-Broglie condition). 

 

The eigen-functions of the momentum operator cannot be normed, as for the absolute value 

of the Gaussian function it holds  
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In essence a minimal momentum and a minimal location expansion (ground state energy) 

needs to be given, which is not equal zero, caused by the uncertainty relation. The root 

cause is given by the ground state wave function, which fulfills 
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 The eigen-functions of the Hamiltonian operator are built by the product of the Hermite 

polynomials and the ground state wave function. As the Gaussian function is even, the 

generation and annihilation operators do not “converge” symmetrically from “both sides” 

(upstairs, downstairs) to the ground state zero energy. The Hermite polynomials are built on 

the Gaussian function and span the  ),(2L Hilbert space. From the properties below the 

same capabilities can be provided by the odd Dawson function. 

 

What will happen, if there is an alternative ground state wave function with 0)0(*
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as alternative model for the ground state wave function. We further propose the normal 

derivative operator T of the double layer potential (which is self-adjoint) as alternative to the 

Schrödinger momentum operator. 

The Hilbert transforms of )(2 xfx n  are also related to the Dawson function. From the 

properties of the Hilbert transform below it follows, that both functions are orthogonal with 

respect to the   ),(2L  Hilbert space, i.e. 

0),( ),(2
LFf  . 

This property in combination with the below commutator properties indicate the usefulness of 

the theory of complementary variational principles ([ArA]), e.g. the method of Trefftz, the 

hyper circle method of Prager/Synge, the method of orthogonal projection ([VeW] 4) for an 

alternative (complementary) harmonic quantum oscillator energy spectrum model. 

 

Lemma 1: The Hilbert transform of the Gauss-Weierstrass density function )(xf  is given by 
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The proof is given in the appendix. 
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Some key properties of the Hilbert transform  

 





 




 dy
yx

yu
yd

yx

yu
xHu

yx

)(1)(1
lim:))((

0 




      

are given in 
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The proposed operator of concern is the normal derivative operator  
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of the double layer potential  
 

2/12/1: HHK  . 

 

 In case of the unit circle this is the Calderon-Zygmund given by ([LiI] (1.2.31)-(1.2.33), [LiI1]): 
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This enables an alternative energy operator in the form 
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whereby the operator T  is self-adjoint (in opposite to the Schrödinger momentum 
operator P ), i.e. it holds 
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Remark: The single layer potential 
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is related to the operators TH , by 
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The corresponding commutator are defined by 
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APPENDIX 
 

 

Proof of lemma 1: The Fourier transform of   
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Hermite Polynomials 

 

The weighted Hermite polynomials 
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form a set of orthonormal functions in ),(2 L , i.e. the Hermite polynomials have only real 

zeros. The relation to the Gaussian function is given by 
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 fulfill the recursion formula 
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from which the recursion formula for the corresponding Hilbert transforms can be calculated
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The Dawson Function 
 
 
 
For the Gauss error function and the Dawson integral 
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Remark: From [AbM] 13, ([GaW], [GrI] we recall the formulas 
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Ball symmetric potential of linear oscillator 

 
 
For the energy  
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the radial function )(rf  of the corresponding eigen-function of the Schrödinger equation is given by 
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Remark (Yukawa potential): The  )( xEi function is also related to the Yukawa potential of a point charge in 

the form 
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in order to define a nuclear force potential which decays rapidly at infinity. Yukawa assumed that 
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order of magnitude of a nuclear radius. It results that the potential u of a charge distribution satisfies the  

Yukawa equation 
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at points of free space. Thus the Yukawa potentials are invariant under the group of rotations and translations of 
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advantages over Newtonian potentials in functional analysis. 
 

Analog to the above we propose a modified Yukawa potential dY  by the substitution 
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The Dawson function )(xF  shows similar behavior as the Yukawa potential with the additional properties that 
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We recall the alternative option for the exponential integral function density (and the eigenfunction of 
the ground state energy of the harmonic quantum oscillator) 
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leading to an alternative “Yukawa” potential with same long range behavior as both, the gravitation 
(Newton) and the electromagnetic (Coulomb) potential (whereby the Coulomb potential is aligned with 
weak interaction potential by the Higgs mechanism) in the form 
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With the standard notation and corresponding abbreviation 
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the Coulomb eigenvalue problem, based on the corresponding Schrödinger equation, 
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The Yang-Mills theory seeks to describe the behavior of elementary particles and is the core of the 
unification of electromagnetic and weak forces, as well as quantum chromodynamics, the theory of 
strong forces. It is the basis of the Standard Model. It is a special example of gauge theory with non-
abelian symmetry group. 
 

According to the above we propose a modified potential )(** rV of the Schrödinger equation, which 
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Applying the Dawson function to define the total energy in a one-dimensional Schrödinger equation by 
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with some constants  ,,  provides a model with finite zero and infinity energy according to  
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Calderon-Zygmund and Riesz Operators 
 
 
 

The Calderon-Zygmund operator with symbol  ([EsG] (3.17), (3.35)) is defined by 
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whereby kR denotes the Riesz operators ([AbH] p. 19, 106, [PeB] example 9.9) 
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The Riesz operators fulfill certain properties with respect to commutation with translations 

homothesis and rotation ([PeB], [StE]). Let )(nSO denote the rotation group. If jj   then 

kj RR  is a singular convolution operator. On the other hand it holds  
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