NUMERICAL SOLUTION OF
HYPERSINGULAR INTEGRAL EQUATIONS

Mohammad Abdulkawi Mahiub1, N.M.A. Nik Long2, Z.K. Eshkuvatov3

1Department of Mathematics
Faculty of Science
Universiti Putra Malaysia (UPM)
43400, Serdang, Selangor, MALAYSIA
e-mail: akawi@math.upm.edu.my

2, 3Institute for Mathematical Research, UPM
43400, Serdang, Selangor, MALAYSIA

Abstract: In this article, an accurate numerical solution for solving hypersingular integral equation is presented. Chebyshev orthogonal polynomials of the second kind are used to approximate the unknown function. The regular kernel is interpolated using Chebyshev interpolation formula of the first kind. Numerical examples are solved using the proposed numerical technique. Numerical results show the accuracy of the present numerical solution.

AMS Subject Classification: 65R20, 45E05
Key Words: hypersingular integral equations, collocation method, interpolation, Chebyshev polynomials

1. Introduction

Consider the hypersingular integral equation (HSIE) of the form
\[
\int_{-1}^{1} \frac{\varphi(t)}{(t-x)^2} dt + \int_{-1}^{1} K(x,t)\varphi(t) dt = f(x), -1 < x < 1, \tag{1}
\]
with the conditions
\[
\varphi(\pm1) = 0, \tag{2}
\]
where K and f' are assumed to be Hölder-continues functions and φ is unknown function to be determined. The first integral in the left-hand side of equation

Received: January 6, 2011 © 2011 Academic Publications

8Correspondence author
(1) is understood as a Hadamard finite-part integral, which is defined by (see Lifanov et al [1] and Martin [2])

$$\int_{-1}^{1} \frac{\varphi(t)}{(t-x)^2} dt = \lim_{\epsilon \to 0} \left\{ \int_{-1}^{x-\epsilon} \frac{\varphi(t)}{(t-x)^2} dt + \int_{x+\epsilon}^{1} \frac{\varphi(t)}{(t-x)^2} dt \frac{2\varphi(x)}{\epsilon} \right\}. \quad (3)$$

The Hadamard finite-part integral (3) is also defined by the Cauchy principal-value integral as

$$\int_{-1}^{1} \frac{\varphi(t)}{(t-x)^2} dt = \frac{d}{dx} \int_{-1}^{1} \frac{\varphi(t)}{t-x} dt. \quad (4)$$

where the Cauchy principal-value integral is defined as

$$\int_{-1}^{1} \frac{\varphi(t)}{t-x} dt = \lim_{\epsilon \to 0} \left\{ \int_{-1}^{x-\epsilon} \frac{\varphi(t)}{t-x} dt + \int_{x+\epsilon}^{1} \frac{\varphi(t)}{t-x} dt \right\}. \quad (5)$$

Equation (1) arises in a variety of mixed boundary value problems in mathematical physics such as water wave scattering and radiation problems involving thin submerged, fluid mechanics, fracture mechanics, acoustics and elasticity (see Chan et al [3], Mandal et al [4] and Parsons et al [5]).

In this paper, we present a numerical solution for solving the HSIE(1). In the approximation, we use the Chebyshev polynomials of the second kind, U_i, to approximate the unknown function $\varphi(t)$ and Chebyshev polynomials of the first kind, T_i, to interpolate the regular kernel $K(x,t)$ with respect to t in the zeros of T_{M+1}.

2. Numerical Technique

Using (4), equation (1) can be converted into

$$-\frac{d}{dx} \int_{-1}^{1} \frac{\varphi(t)}{t-x} dt + \int_{-1}^{1} K(x,t)\varphi(t) dt = f(x), \quad -1 < x < 1. \quad (6)$$

Rewriting the unknown function $\varphi(t)$ in equation (6) which satisfies the conditions in (2) as

$$\varphi(t) = \sqrt{1-t^2} \psi(t), \quad (7)$$

where the function $\psi(t)$ is well behavior on the interval $[-1,1]$.

Now, approximating $\psi(t)$ by using Chebyshev polynomials of the second kind as follows

$$\psi(t) \approx \sum_{i=0}^{N} a_i U_i(t), \quad (8)$$
where \(a_i, i = 0, 1, \ldots, N \) are the unknown coefficients to be determined.

Due to (7-8), the numerical solution of equation (1) is of the form

\[
\varphi(t) \approx \sqrt{1 - t^2} \sum_{i=0}^{N} a_i U_i(t).
\] (9)

Substituting (9) into equation (6) yields

\[
\sum_{i=0}^{N} a_i [P_i(x) + Q_i(x)] = f(x),
\] (10)

where

\[
P_i(x) = -\frac{d}{dx} \int_{-1}^{1} \sqrt{1 - t^2} U_i(t) \frac{dt}{t - x}
\] (11)

and

\[
Q_i(x) = \int_{-1}^{1} \sqrt{1 - t^2} K(x, t) U_i(t) dt.
\] (12)

It is known that (see Mason et al [6])

\[
\int_{-1}^{1} \sqrt{1 - t^2} U_i(t) \frac{dt}{t - x} = -\pi T_{i+1}(x), \quad -1 < x < 1,
\] \(\begin{cases}
\quad \text{for } i \neq 0, \\
\quad \text{and } \\
\quad \text{if } i = 0 \text{ we have } \frac{d}{dx}(T_{i+1}(x)) = (i + 1) U_i(x), \quad -1 < x < 1.
\end{cases}\) \(\begin{cases}
\text{(13)}
\end{cases}\)

Taking into account (13) we obtain

\[
P_i(x) = -\pi (i + 1) U_i(x), \quad i = 0, 1, \ldots, N.
\] (14)

In order to evaluate \(Q_i(x) \), the integral in (12) may be calculated analytically. If we cannot evaluate the integral in (12) analytically, we may do so approximately, for instance, by interpolating the regular kernel \(K(x, t) \), with respect to \(t \), in the zeros of \(T_{M+1} \) as a sum of Chebyshev polynomials in the form (see Mason et al [6])

\[
K(x, t) \approx \sum_{k=0}^{M} c_k(x) T_k(t),
\] (15)

where

\[
c_k(x) = \frac{2}{M + 1} \sum_{\ell=1}^{M+1} K(x, t_\ell) T_k(t_\ell),
\] (16)
and
\[t_\ell = \frac{(2 \ell - 1)\pi}{2(M + 1)}, \quad \ell = 1, 2, \ldots, M + 1. \tag{17} \]

Then
\[Q_i(x) = \sum_{k=0}^{M} c_k(x) \int_{-1}^{1} \sqrt{1 - t^2} T_k(t) U_i(t) \, dt. \tag{18} \]

It is easy to verify that (see Mason et al [6] and Abdulkawi et al [7])
\[T_k(t) U_i(t) = \frac{1}{2} \left[U_{k+i}(t) + U_{i-k}(t) \right], \quad i, k = 0, 1, 2, \ldots \tag{19} \]

Using (19) into (18) yields
\[Q_i(x) = \frac{1}{2} \sum_{k=0}^{M} c_k(x) \left[b_{i,k} + d_{i,k} \right], \tag{20} \]
where
\[b_{i,k} = \int_{-1}^{1} \sqrt{1 - t^2} U_{k+i}(t) \, dt = \begin{cases} \frac{\pi}{2}, & k + i = 0, \\ 0, & k + i \neq 0. \end{cases} \tag{21} \]
and
\[d_{i,k} = \int_{-1}^{1} \sqrt{1 - t^2} U_{i-k}(t) \, dt = \begin{cases} \frac{\pi}{2}, & i = k, \\ -\frac{\pi}{2}, & k - i = 2, \\ 0, & \text{Otherwise}. \end{cases} \tag{22} \]

Then, choosing the suitable collocation points \(x_j, j = 0, 1, \ldots, N \) for equation (10) such as the zeros of \(U_{N+1} \). These lead to a system of linear equations
\[\sum_{i=0}^{N} a_i \left[P_i(x_j) + Q_i(x_j) \right] = f(x_j), \quad j = 0, 1, \ldots, N. \tag{23} \]

Solving the system (23) for the unknown coefficients \(a_i, i = 0, 1, \ldots, N \) and substituting the values of \(a_i \) into (9) we obtain the numerical solution of equation (1). Note that the dash in \(\sum^{'} \) denotes that the first term in the sum is to be halved.
3. Numerical Results

Example 1. Consider the following HSIE

\[
\int_{-1}^{1} \frac{\varphi(t)}{(t-x)^2} dt + 16 \int_{-1}^{1} x^3 t^3 \varphi(t) dt = -\pi [31x^3 - 16x],
\]

(24)

with the conditions

\[
\varphi(\pm1) = 0.
\]

(25)

It is not difficult to verify that the exact solution of equation (24) is

\[
\varphi(t) = \sqrt{1-t^2} [8t^3 - 4t].
\]

(26)

Due to (12) we have

\[
Q_i(x) = 16 \int_{-1}^{1} \sqrt{1-t^2} x^3 t^3 U_i(t) dt.
\]

(27)

With the help of the recurrence relation of Chebyshev polynomials of the second kind

\[
U_0(x) = 1, \quad U_1(x) = 2x,
\]

\[
U_n(x) = 2x U_{n-1}(x) - U_{n-2}(x), \quad n \geq 2.
\]

(28)

we have

\[
t^3 = \frac{1}{8} [U_3(t) + 2U_1(t)].
\]

(29)

Using (29) into (27) yields

\[
Q_i(x) = 2x^3 \int_{-1}^{1} \sqrt{1-t^2} [U_3(t) + 2U_1(t)] U_i(t) dt.
\]

(30)

It is known that

\[
\int_{-1}^{1} \sqrt{1-t^2} U_i(t) U_j(t) dt = \begin{cases}
0, & i \neq j, \\
\frac{\pi}{2}, & i = j.
\end{cases}
\]

(31)

From (30-31) we obtain

\[
\begin{align*}
Q_0(x) &= 0, \quad Q_1(x) = 2\pi x^3, \quad Q_2(x) = 0, \\
Q_3(x) &= \pi x^3, \quad Q_i(x) = 0, \quad i \geq 4.
\end{align*}
\]

(32)
Thus, the system of linear equations (23) for $N = 3$ becomes
\begin{equation}
\sum_{i=0}^{3} a_i \left[-\pi(i + 1)U_i(x_j) \right] + 2\pi a_1 x_j^3 + \pi a_3 x_j^3 = -\pi [31x_j^3 - 16x_j], \quad j = 0, 1, 2, 3.
\end{equation}
which is equivalent to
\begin{equation}
\begin{bmatrix}
2\pi a_1 - 31\pi a_3, & x_j^3 - 12\pi a_2 x_j^2, & + [-4\pi a_1 + 16\pi a_3]x_j \\
+3\pi a_2 - \pi a_0 & = -31\pi x_j^3 + 16\pi x_j, & j = 0, 1, 2, 3.
\end{bmatrix}
\end{equation}
Comparing the coefficients of various powers of x_j from the both sides of equation (34) yields the following system
\begin{equation}
\begin{bmatrix}
3\pi a_2 - \pi a_0 = 0, \\
-4\pi a_1 + 16\pi a_3 = 16\pi, \\
-12\pi a_2 = 0, \\
2\pi a_1 - 31\pi a_3 = -31\pi.
\end{bmatrix}
\end{equation}
It is easy to see that the solution of the above system (35) is
\begin{equation}
a_0 = a_1 = a_2 = 0, \quad a_3 = 1.
\end{equation}
Substituting the values of the coefficients $a_i, i = 0, 1, 2, 3,$ into (9) we obtain the numerical solution of equation (24) which is identical to the exact solution given by (26).

Example 2. Consider the following HSIE
\begin{equation}
\int_{-1}^{1} \frac{\varphi(t)}{(t-x)^2} dt + \int_{-1}^{1} \sin(x) t^4 \varphi(t) dt = f(x)
\end{equation}
with the conditions
\begin{equation}
\varphi(\pm 1) = 0,
\end{equation}
where
\begin{equation}
f(x) = -\pi \left[5(16x^4 - 12x^2 + 1) - \frac{\sin(x)}{32} \right].
\end{equation}
The exact solution of equation (37) is
\begin{equation}
\varphi(x) = \sqrt{1 - x^2} (16x^4 - 12x^2 + 1).
\end{equation}
By using (20-22) with $M = 5$, we obtain

\[
\begin{align*}
Q_0(x) &= 0.06249999990 \pi \sin(x), \quad Q_1(x) = 0, \\
Q_2(x) &= 0.09374999990 \pi \sin(x), \quad Q_3(x) = 0, \\
Q_4(x) &= 0.03125000012 \pi \sin(x), \quad Q_5(x) = 0.
\end{align*}
\] (40)

Choosing the zeros of U_{N+1} as the collocation points x_j for equation (23) where $N = 5$, i.e.

\[
x_j = \cos \left(\frac{(j + 1) \pi}{N + 2} \right), \quad j = 0, 1, \ldots, 5,
\] (41)

and solving the obtained system for the unknown coefficients a_i, $i = 0, 1, \ldots, 5$. Substituting the values of a_i into (9) we obtain the numerical solution of equation (37). The errors of numerical solution of equation (37) are given by Table 1.

Example 3. Consider the following HSIE

\[
\int_{-1}^{1} \frac{\varphi(t)}{(t - x)^2} dt + \int_{-1}^{1} e^x t^2 \varphi(t) dt = -\pi \left[12x^2 - \frac{1}{8} e^x - 3 \right].
\] (42)

with the conditions

\[
\varphi(\pm 1) = 0.
\] (43)

It is easy to see that the exact solution of equation (37) is

\[
\varphi(x) = \sqrt{1 - x^2} (4x^2 - 1).
\] (44)

Using (20-22) with $M = 5$, we obtain

\[
\begin{align*}
Q_0(x) &= 0.125 \pi e^x, \quad Q_1(x) = 0, \\
Q_2(x) &= 0.1249999999 \pi e^x, \quad Q_3(x) = 0, \\
Q_4(x) &= 1.75 \times 10^{-10} \pi e^x, \quad Q_5(x) = 0.
\end{align*}
\] (45)

Using x_j in (41) as the collocation points for equation (23) where $N = 5$ and solving the obtained system for the unknown coefficients a_i, $i = 0, 1, \ldots, 5$. Substituting the values of a_i into (9) we obtain the numerical solution of equation (42). The errors of numerical solution of equation (42) are given by Table 2.
We have developed collocation method based on the Chebyshev orthogonal polynomials for solving the hypersingular integral equations. Chebyshev interpolation formula helped us to approximate the regular kernel. The collocation points in examples 2–3 are chosen to be the zeros of Chebyshev polynomials of the second kind U_{N+1}. The errors of the collocation method shown in the Tables 2-3 are computed as the absolute value of the difference between the exact and numerical solutions. We used Maple 13 to carry the computations. The developed collocation method gives a very accurate numerical results for any singular point $x \in [-1,1]$ with only small number of collocation points $N = 5$ (Tables 1-2). Moreover, the developed collocation method gives the exact solution for some hypersingular integral equations (Example 1).

<table>
<thead>
<tr>
<th>x</th>
<th>$N = M = 5$</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>0</td>
<td>5.00×10^{-10}</td>
</tr>
<tr>
<td>-0.9</td>
<td>2.10×10^{-09}</td>
<td></td>
</tr>
<tr>
<td>-0.8</td>
<td>3.60×10^{-09}</td>
<td></td>
</tr>
<tr>
<td>-0.7</td>
<td>4.00×10^{-09}</td>
<td></td>
</tr>
<tr>
<td>-0.6</td>
<td>2.90×10^{-09}</td>
<td></td>
</tr>
<tr>
<td>-0.5</td>
<td>3.40×10^{-09}</td>
<td></td>
</tr>
<tr>
<td>-0.4</td>
<td>2.81×10^{-09}</td>
<td></td>
</tr>
<tr>
<td>-0.3</td>
<td>2.30×10^{-09}</td>
<td></td>
</tr>
<tr>
<td>-0.2</td>
<td>2.10×10^{-09}</td>
<td></td>
</tr>
<tr>
<td>-0.1</td>
<td>2.00×10^{-09}</td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>2.10×10^{-09}</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>2.30×10^{-09}</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>2.72×10^{-09}</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>3.30×10^{-09}</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>2.90×10^{-09}</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>4.00×10^{-09}</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>3.60×10^{-09}</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>2.70×10^{-09}</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>4.00×10^{-10}</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Errors of numerical solution of equation (37)

4. Conclusion

We have developed collocation method based on the Chebyshev orthogonal polynomials for solving the hypersingular integral equations. Chebyshev interpolation formula helped us to approximate the regular kernel. The collocation points in examples 2–3 are chosen to be the zeros of Chebyshev polynomials of the second kind U_{N+1}. The errors of the collocation method shown in the Tables 2-3 are computed as the absolute value of the difference between the exact and numerical solutions. We used Maple 13 to carry the computations. The developed collocation method gives a very accurate numerical results for any singular point $x \in [-1,1]$ with only small number of collocation points $N = 5$ (Tables 1-2). Moreover, the developed collocation method gives the exact solution for some hypersingular integral equations (Example 1).
Table 2: Errors of numerical solution of equation (42)

<table>
<thead>
<tr>
<th>x</th>
<th>$N = M = 5$</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>-0.9</td>
<td>5.0×10^{-10}</td>
<td></td>
</tr>
<tr>
<td>-0.8</td>
<td>6.0×10^{-10}</td>
<td></td>
</tr>
<tr>
<td>-0.7</td>
<td>5.0×10^{-10}</td>
<td></td>
</tr>
<tr>
<td>-0.6</td>
<td>6.0×10^{-10}</td>
<td></td>
</tr>
<tr>
<td>-0.5</td>
<td>9.6×10^{-10}</td>
<td></td>
</tr>
<tr>
<td>-0.4</td>
<td>1.1×10^{-9}</td>
<td></td>
</tr>
<tr>
<td>-0.3</td>
<td>1.0×10^{-9}</td>
<td></td>
</tr>
<tr>
<td>-0.2</td>
<td>9.0×10^{-10}</td>
<td></td>
</tr>
<tr>
<td>-0.1</td>
<td>1.0×10^{-9}</td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>1.0×10^{-9}</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>9.0×10^{-10}</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>9.0×10^{-10}</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>1.0×10^{-9}</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>1.1×10^{-9}</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>9.3×10^{-10}</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>6.0×10^{-10}</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>4.0×10^{-10}</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>6.0×10^{-10}</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>5.0×10^{-10}</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Acknowledgments

This work was supported by University Putra Malaysia under Postdoctoral Fellowship and project No. 05-03-10-0988RU.

References

