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Abstract: For the Poisson equation, the plate equation and the two dimen-
sional Stokes’ equations direct proofs are given concerning the regularity of

the solution in dependence of a reduced regularity of ihe right hand sides
hased on standard estimates for the Newtonian potential.

0. Let us consider a boundary §Emu3u_m32§mE....m::n:: Ennzaz
spaces U € Hy and T € H,. Usually for @ given space K, the range K, = R(A) =
(fIf = Au Au €M, is obvious to describe such that the mapping A: #; 2> H,
is bounded. Typical examples for A=-A with A being the Laplacian are
#y = He() and B, = Hi_»(Q) respective Hy= Ci (1) and g = Cr20(80) for k2 2.
Here Hy respective Cy denole the usual Sobolev respective Holder spaces.
The concern of shift-theorems is the reciprocal problem, ie. to characterize
function spaces Hy, Hz such that the mapping A" H, —> M, is bounded. In the
above mentioned examples "' is bounded provided the boundary o€ is suffi-
ciently reguler and e.g. the boundary values are zero. It is easy to see that
the mentioned shift theorems may be extended to k = 1 in the case of Sobolev
spaces. Then H.{(Q) may be considered as the dual of H{f) with respect to
L,{f) or equivalently (in the distributional sense) as the space of functions
given by the divergence of vector-vaiued functions with components in L)
equipped with the appropriate L,-norm. If the space C_,,(f0) is defined in the
latter way the corresponding shift theorem is also valid.

This result is contained in the famous paper of Agmon-Dougles-Nirenberg
(1959). We refer aiso to Morrey (1966), {Theorem 5.5.5, p. 156} and concerning
interior estimates to Giaquinta (1983), (Theorem 2.2, p. 84}.
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In the literature cited the full strength of the theory of elliptic equations is
used. The aim of this paper is to give direct proofs of this shift theorem and
corresponding generalizations to the biharmonic operator as well as to the
Stokes’ equations in two dimensions. The proofs are based on standard esti-
mates for the Newtonian potential. The underiying idea can be found in
Schulz (1981). In this way the proofs presented here may be considered as a
consequent continuation of the work of Schuiz.

Quite often we wiil refer to the standard book of Gilbarg-Trudinger {1977},
the references are indicated by {GT,p...}. Of course the notations used are
thase of the book cited. The partial derivatives "9z/0%:", %2/ a%idr;” et
will be sbbreviated by “zy", "7i5;” etc. The summation convention is not used,

whenever a sum sccurs for instance with respect to °i" we will indicate this
by 3 iy

1 In this section we considel the boundary value problem

-Au = f in € ;
(1.1}

u 0 onaf

Here © ¢ A" denotes a bounded domain with boundary &¢ sufficientiy
smooth. The Sobolev-space theory gives the shift theorem:

Theorem (8.1): Assume the right hend side in (1.1} has the requiarity f € Hg =
Hi(f2) with k 2 0. Then the unique (generalized) solution of the boundary vat-
ue probiem (1.1} has the regularity u € Hg. and the a priori estimete holds
true:

{1.2) uly,, § cifly,

Remark: ¢ will denote a generic constant which may differ at different
places. In (1.2} ¢ depends only on k and 30, If necessary we will write e. g.
¢ = c(k,r) in order to indicate the dependence of ¢ upon the two other con-
stants k and r.

Joachim A. Nitsche 3

Parallel to above the Schauder theory gives the shift theorem:

Theorem (5.2): Assume the right hand side in (1.1) has the regularity T€Cgy =
Ci(T1) with k20 snd 0 <x ¢1 Then the unique {classical) solution of the
boundary value problem (1.1) has the regularity u € Cr.2 and the 8 priori
estimate holds true:

(13) bulg,,, ¢ clflg,

Mow we assume that f is the divergence of a vector-valued function =
{Fy,Fa, ..., Fak

(1.4) f -VE = -2 F

The weak solution of {11) is characterized by

Definition 1.1: u € fl; is the weak solution of {1.1) if the variational equation

D(u , ¢}

iy (Ui, @1i)

> iy (Fi s i)

{1.5)

holds true for all test-functions ¢ € D0 .

Obviously the weak solution is well defined in case of F € Ho = Lo(R), 1. €.
Fi€ Lo(§)) for i =1, ., n, and the following shift theorem is valid:

Theorem (5.3): Assume the right hand side f = —-V-F has the regularity E € Ho .
Then the unique (weak) selution of the boundary value probiem (L1} has the
regularity u € Hy and the 8 priori estimate holds true:

{1.6) fuly, $ clEly, = _.UME_F.__,M
More general we will use
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Definition 1.2: Let £ be e given (open) domain. A function U € Hy(Z) is a weak
sofution of the Poisson eguation

(1.2 A4 = =WF in 2
if
(1.8) D, @) = X Fi,on)

halds true for all test-functions ¢ € B(3) .

The aim of this section is Lo give a direct proof of

Theorem 1% Assume the right hand sida § = -%-F has the regularity £ € Co.
{i.e FieCqy foris=i, _, ) with ¢ <X £1. Then the {wenk) sclution of the
boundary value problem {11} hes the regularity u € Cia and the a priori
esiimate holds true:

{1.9) bulg,, ¢ . e¥Elg, = ©26TFlG, .

Remark: In Appendiz B we will show thel the case of 2 right hand side of the
structure

f1.47) f = -VE + Fg

with Fo, Fy, ..., Fp € Cqy is covered by Theorem 1.3, of course then {i.9) has to
be changed 1o

{197 lule,, §  cflfelc,, + DERC,,} .
As mentioned in the introduction the proof will follow the lines of Gilbarg-
Trudinger. We begin with some [emmata.

Lemma 1.4: Let By, Bs be concentric balls in B" with center x° of radii kyr,
kqr respectively with r > 0 and 0 <k, < ks . Suppose E€ Coa(Ba) with 0 <A S1
There exists @ wesk solution U of (17) in By, having the regularity
i € €y B3) and admitting the a prior estimate { ¢ = c{r ko.ks) )
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(ti0)  Bibg, B ¢ CVENC,@) .

Proof: Let F() be the fundemental solution of the Laplace-operator
{GT, p.50). The funclions

(1) vi = [I=F
ie
{1.12) Vixy = JIrG-yFily) dy

(the domain of integration is Bs) are C, ,(Bs)-functions being solutions of
{1.13) -8V = F; inBs ,

and the a priori estimates

(114) BV, By ¢ CHEFilc,,(By)

are valid {GT, Lemma 4.4, p.56}. Now we define

(115) o = -¥m -

Obviously we have U; € Cy,(Bs) and

(L1e)  Mijlg, (B ¢ CUFilgy,@,) -

with any ¢ € D(B;) we get

D, ¢ = S CVitisoon)
= T Vi, o)
(117 .
= (-avi, o)
= (F;, o) .
This implies: The function
(118) i = T,

is a weak solution according to the assertions of Lemma14. B
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Lemma 15: Let B,, B be two concentric balls in R of radii kg, kar respec-
tively withr> 0, 0 <k ¢Kks . m:_uﬁammm_m.mo.yﬁm& with 0 ¢ A ¢1_For any weak
solution u of (1.7) the a priori estimate is valid with ¢ = c{r, ky, Ks):

o) Mulg,@) ¢ c{VEMg, (B +1uleg] -

Proof: Let U be the function with the properties slated in Lemma 1.4 with
e.g. ky = (ky + k3)/2. The difference v = u - U is harmonic in Bs respectively in
B». Therefore any (arbitrary strong} norm of v in By is bounded by any (arbi-
trary weak) normof vinB;. B

In what follows B", will denote the positive half-space, ie. ail x € B" with
%, >0, and T will denote the hyperplane x, = 0. For ¥® € T the haif-balls

B, nE", are dencted by By'. Correspondingly Ty denctes ihe intersection
BpenT.

Lemma 1.6: Assume x® € T and F € Co(Bs"). There exists a function U €
C4(Bs"} with U = © an T4 being 8 weak solution of {1.7) in B;" such that the a
priori estimate holds true:

(120 VUl (B,) ¢ cUENC,,(By")

Proof: For any y = (uy, .., Ys) € B", we put § = (s, .., Un-s, ~Ya? for the point
reflected with respect to T. This time we define for o = 1, 2, .., n-1 the
functions Vo by

{1.21) Pul) = JIT(x-w) Felydy - [ JT(x-0) Felydy
and
(1.22) Valt) = JIT(-9) Faly)dy + [ [T{x-g) Falyldy

{the domain of integration is B,"). The function

(1.23) u = 1M:.v mh._.

has the properties stated in Lemma 16. W
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The proof of the next lemma follows the lines of the proof of Lemma 15,
only Schwarz’ reflection principle has to be applied in addition.

L emma 1.7: Assume x° € T and F € Co(Bs"). For any weok solution u of (1.7)
with u € Ay(Bs") the a priori estimate is valid:

124)  Bulg, @B ¢ c{BEIg,, B+ Vull,(6s) )

Lemma 1.5 and Lemma 1.7 are the counterparts of Theorem 4.6 (GT, p. 59} and
Theorem 4.11 {GT, p. 63}. The arguments of Gilbarg-Trudinger (GT, pp. 82-94}
transferred to our setting finish the proof of Theorem13 B

In the subsequent sections 2 and 3 we will need also a corresponding shift-
theorem for inhomogeneous Dirichlet boundary conditions:

Theorem 1.8: Let the boundary value problem

-Au = 0 in @
(1.25)
u = Up on  ofd

be given. The regulerity Up € C,,(302) implies the regularity u € Coa(8D) of
the solution, and the a priori estimate is valid:

{1.26} tulg, @ ¢ clbolg,(on)

Proof: In connection with the arguments of Gilbarg-Trudinger mentioned
above it suffices to prove the counterperis of Lemmata 1.6, 1.7.

Lemma 1.9: Let g € Cq,(T5) be given. There exists a function U € Cy,(Bs") with

(1.27) u = g on T; ,

harmonic in By®, and admitting the a priori estimate

(1.28) iU Ig,,(B,) ¢ chglg,(Ty)
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Proof: We define the function 6 € Cy5(Bs) by

(1.29) G(%s,  Kn-1.%n) = 0%y, Xn-d)
and consider the difference
{1.30) w = u-6G.

In order that U has the properties stated in the lemma it is sufficient to
show the existence of a function W according to

AW = AG in B

»

{1.31)

I

W = 0 on Vg

such thal the eslimetle

(Ea

(132) WG, (B, chgic, (Ts)
nolds true. We define the function E by

Fox = B ® O for o=

{1.33)
m.: = Y]

Dbviously we have F € Co (Bs") and

(134) PENC, (By) ¢ caig, \(Ts)

Thus Lemme 1.6 guerantees the existence of a weak solution w according to
the regularity and the e priori pstimates stated. B

Lemme f10:lel gE n_.vﬂt be given and let ube a wedak solulion of

{1.35) Ay = 0 in By
with boundary values

{1.36} u = g on T3
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Then the a priori estimate is valid:

(139 Tulg, @B ¢ c{iglg, (@, +1u I,(B,") }

The proof follows the arguments given above in connection with Lemma 1.7.
This finishes the proof of Theorem 1.8. @

2. In this section we consider the problem
A o= o inf

(2.1) u 0

on of2
Uin = 0

We will not repeat the counterparts of the Shift-Theorems (5.1) and (5.2)
and the corresponding norm estimates. In the present case the "2" in (1.2) and
(1.3} is to be replaced by "4".

This time we consider right hand sides f (2.1) of the structure

(2.2) f = VARE = TP

Then the weak solution of (2.1) is characterized by

Definition 2.1: u € f, is the weak solution of {2.1) if the variational equation

(Au,Ag) = T Wi, Pud)

(2.3)
= Zeip CFii s Pnp

holds true for all test-functions ¢ € H(R).

Dbviously the weak solution is well defined in case of FeHo = Lalf2), i &
Fij € Lo(R) for i, = 1,..,n, and the following shift-theorem is valid:
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Theorem (5.4): Assume the right hand side f = V2F in (21) hes the regularity
F € Ho. Then the (unique) weak solution of the boundary value problem (2.1}
has the regularity u € H, and the a priori estimate holds true:

{2.4) fully, $ cf Ely, = ¢ M."_...: 0Fi b,

The counterpart of Theorem (1.3) is

Theorem 2.2 Assume the right hand side T = VA.F has the regularity £ 6 Cos.,
i.e. Fij€Coy for i, j = 1,..,n. Then the weak solution of the boundary value
problem (2.1) has the regularityu e C,,, andthea priori estimate holds true:

{2.5) fulg,, § cHElg,, = €2 Fiilcy,

Remark: Analogue to the situation for second order equations - see the re-

mark following Theorem 1.3 - we could consider right hand sides f (2.2} of
the structure

{227 f = VLE - V-Fg + Foo

with Fug € Cos for o, g=0,1, .., 1 Then {2.5) has to be changed to

{257 lulg,, ¢ ¢ {1ENC,, +1Eolg,, +1Fo0 Ice., ) -

The proof of Theorem 2.2 could follow the lines of section 1 but we will use
a different approach. First we show

Lemima 2.3: Let By, Bs and & be a8 stated in Lemma 1.4 and let F € Coa(Bs) be
given.Then there exists a weak solution il of (2.14) in Bs, having the requiarity
il € C2,(B3) and admitting the estimate

(2.6} B, (B, ¢ CRENC,,Bs -

Proof: Similar to the proof of Lemma 1.4 we introduce the functions
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Yij

i
-
"
n

_.£z
n
<t

=

(2.9

N
1]
-
]
£2

=

=]
=
]

N2
=0
=

with ¢ € D(Bs) we get by partial integration the sequence
(Al , A9) = ﬁm: 5 D»éu

= (@i, M%)

~(AZij, Agii)
{2.8)

n

= (Wi , D) -(Vij , A

= LAV, o) (Fij, oui) -

Now we define
(29) U= T i .
Obviously il is 8 weak solution of (2.15) in By. We conclude U € C2,(Bs) and

(2100  Bilg,,(B) ¢ CcUElg,,(B,) - ®

Mow we Lurn over to a weakened version of Theorem 2.2:

Lemma 2.4: Under the assumptions of Theorem 2.2 there exists a weak solu-
tion © of the partisl differential equation (21,) such that (25) holds true
with u replaced by u.

Proof: Let *f2 be chosen fixed such that the inclusion 2 cC 4 holds; e. g. we
may use {for some h > 0)

(2.11) e = xldist{x,f)<h} .
Any function g € Cx»(fD) can be extended to a function ¢g € Ci 5(°Q2) such that

(212)  1°gig, (¢ ¢ clglg (@)
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- gee Stein (1970}, p. 175, p. 194 - Now let *F be & corresponding extension of
F to *Q. In view of Lemma 2.3 in combination with the arguments of Gilbarg-
Trudinger mentioned above there exists a weak solution *U of

(213) Al = VAE in @
with °U € C,,(°Q) and

P, ¢ cf *E Bg, ,(TD)
{2.14)

Ut

cl m —1_.%.._Mﬂ,,.

=

Thus the function U = nm_n has the properties stated in Lemma 2.4. g

Now we turn over to the proof of Theorem 2.2. Let i be a function guaran-
teed by Theorem 2.4. With u being the sotution of the original boundary value
probiem (2.1} we put

{2.15) U = u-u .
Then U has to be a solution of’

A%l

]
k=]
5
=

{216} U o= Ug

on o}
Uy = Uy

Here Uy respective Uy denote the trace of U respective of its normal deriv-
ative on 39 We have the regularity Up € C,,(0f) respective Uy € Cy,(00)
and the a priori bound

{217) 1 Up B, (a0 + BUnlC, (200 ¢ clElig,,

In order to finish the preof of Theorem 2.2 it remains to show

Theorem 2.5: Under the assumptions Up € C2,(00), Uy € Cq.(262) the solution
of the boundary value probiem (2.16) has the regularity U € Coolf) n L2
and admits the a priori estimate

(218) i, $ cllUplc,,@m + 1Unic,em! -
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Proof: The fact U € Coo(f2) is @ consequence of weyl's lemma and is not dis-
cussed here. In connection with standard arguments &s already used above it

" is sufficient to prove a local version of Theorem 2.5. We will adopt the nota-

tions of section 1, this time we will work with four different concentric
balls with center x € T.

Lemma 2.6: Let g € C55(T4), h € Cy5(Ta) be given. There exists a function U €
C2.(B4"), biharmonic in B,* with the boundary values

u = g

{219} N on Ty
Upp = h

and admitting the a priori estimate

(2200  Nulg,,(B) ¢ ¢ {ghc, (T + Wi, \(Ty) + -m—r»nm...v }.
Proof: We will use the classical result:

Theorem {R): Let u be biharmonic in the halfball B°. There exist two func-
tions v, w harmonic in B° such that the representation is valid:

{2.21) ]

ﬂ + XHE -
For the sake of completeness we reproduce the proof to be found e. g. in
Frank - v. Mises (1930}, p. 848 in Appendix A.

Our sim is to construct functions ¥, W such that by (2.21) a function il is
given according to Lemma 2.6. In the first step we consider the probiem

-Ay 0 inBg :
(2.22)
v

g onTs .

Theorem 6.6 { GT, p. 93 } guarantees the existence of a solution v of (2.22)
with ¥ € C;,(B4") and

(229) IV, (B, ¢ cUO0C,, (T
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In the second step we consider the problem
-Aw = 0 inBs®
{2.24) N
w = Hh = h-vyuy onTs
In view of (2.23) and our assumptions on g, h we have
(225)  Bflg,, (T ¢ cliglc, (T + Thic,(Ty) }.
Lemma 1.9 guaraniees the extistence of a solution w € Cy,(B;") with

(2.26) W Ic,, (B, ¢ ¢ {1g I, (T *+ ThIC,,(TD) }s

Since ¥, w are harmonic the function

(=4
"
<~
+
x
=
£

{2.27)

is hiharmonic in B,’. Moreover U has the properties: (i) The boundsry condi-
tions (2.16, ) are Tulfilled; (i) In view of (2.23) and (2.26) the Tunction i has
the regutarity U € Cyx(B5"). = Actually Ui possesses & higher regularity than
stated in (i), In order to see this we look at the differential equation

(2.28) AL = -2W

which is a consequence of the representation (2.27) with ¥, w being harmonic
functions. This implies: U (2.27) is 8 solution of the boundary vaiue problem

Ay = f = 2wy inB
{2.29)
u = 0 on T, .

We have the regularity T € Con(B2) and g € C,(T,). Standard a priori esti-
mates {GT, p.66} then lead to i € C,,(B,") and to the bound {2.20). B

3. Now we turn over o the discussion of regularity resuits similar to above

for Stokes’ flows. We will restrict ourselves to n = 2 dimensions. Slightly
generalizing we consider the following boundary value problem:

Joachim A. Nitsche 15

Ay + Vp

n
oy

{(3.1) vy

n
=

u = 0 on 0

Obviously the function p (physically the pressure) is arbitrary with respect
{0 an additive constant. As customary [, denotes the factor space L./R
equipped with the corresponding factor norm.

Corresponding to sbove we consider right hand sides f (3.1} with a reduced
regutarity. This time we assume

(3.2) f = -Va8 ,
ie.
(3.2 fi = |Ma__ 6ijlj

The range of the indices i,j is {1, 2} . For right hand sides f of the structure
{5.2) the weak solution of (3.1) is characterized by

pefinition 3.t: u € By is the wesk solution of {3.1) if the variational equalions

(Vu, v -(p,V¥) = g,V .
{3.3)
{g,vV.u) = {q,n

hold true for all test-functions v € B{R) and q € L, = [x(Q).

The inner products in (3.3) ere defined by
(Vyu, Vv = Tp aovad

(s4) {p,V¥ = Y v :

(g, V¥ PRI ;

In the situation at present we have the shift-theorem corresponding to 5.3
and 5.4
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Theorem (5.5): Assume the regularity f = -V-§ with g € Ho and h € L, Then
the unique (weak) solution (u, p} of the boundary value problem (3.1) has the
regularity e Hy , pe L, and the a priori estimate holds true:

(55) Nuly+ipl, < c{Bghy, +1nif,}

In correspondence with Theorem 1.3 and Theorem 2.2 we will give a direct
proof of

Theorem 3.2: Assume { = -V-g with g € Co and h € o4 = Cox N Lz Then the
unique (weak) solution {y, p} of the boundary value problem (3.1) hes the reg-
uwlarityue ey . P € 0. , 8nd the a priori estimate holds true:

(36) Mulg,, +Bpi,, ¢ c{igig, + Inigy, ]

First we will prove a weakened version {see Lemma 2.4):

A

Lemma 3.3: Under the assumplions of Theorem 3.2 there exists a weak solu-
tion {i, p} of the partial differential equations (3.142) such that (3.6) holds
true with {u, p} replaced by (@, p).

Proof: Let ° be an extension of © (see (2.11)) and *s, “h be corresponding
extensions of ¢, h to °§ such that estimates of the type (212) are velid. In
arder o show the existence of {U, p} we use the "Ansatz”

Uy

u

E_R = 6—: ’
(3.7)

Uz

Wiy + Pix

with two functions yi, ¢. Here %, y are the two independent variables %, Xa.
In addition we introduce

(3.8} 3 = -Ay¢

In terms of ¢, iy and $ the differential equations (3.1y,) are
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-Agg - Iy P = “6iix + *Gr2ly "
(39) -Ayy*3x+Py = 6aux +  Gazly 5
Ay = ‘h i

These 3 equations can be decoupled into

(3.10} -Ay = -*h ,
Sy + Pix = (%6 +*Mix +  “Gialy i
(3.11)
Six + Py = ®6aix  + (622 + “Miy

By Theorem 5.2 the existence of a solution y of {3.10) with the regularity
y € C2,(°) and

(312)  Bylg,, @ ¢ clthig (°0) ¢ chhig, @

is gueranteed. A weak solution of the Cauchy-Riemann-equations (3.11) is
given by

3 = Agixy + Bialgy ~ Datixx — Azaixy
(3.13)

P = ~Aux - Bizixy ~ Azixy - Azztuy
with
{3.14} Ay = T o= (%6ij + *nbip)

The convolution I" = (-} has to be taken over the domain *Q). Further let ¢ be a
weak solution of (3.8) in °Q. In view of the genersl a priori estimates we
conclude ¢ € C2,{*R), p € Cox(*Q) and

(845) Bgalc,, + Dpalcy, € cltelg,, » Inlg,}
By this and (3.12) the proof of Lemma 3.3 is finished. &
Now we consider the difference

~ ar

{3.16) 1] yu-u , P = p-p

n
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between the solution of the boundary value problem (3.1) and {U, p} just con-
structed. {U, P} has to be a solution of

-AU + VP 0

{347 V4

1
<

u = -4 on o%t
Similar to (3.7) we use the "Ansatz”

(3.18) Up = -y, Uz = P

In this way the condition of incompressibility {317,) is fulfilled. The equa-
tions (3.17) are in terms of ¢ and P

(A®hy + P 0

{3.19)

L

AP + Py 0
Necessarily @ has to be biharmonic in €

{3.20) A = 0o inQ

Then P is defined by (3.19) up to a constant, ie. P € [, is uniquely defined.
Mow we look at the boundery conditions for . Because of (3.7) these are

O = “Pix — Yy
{3.21) on A%

L Py * Wi

In terms of the tangential derivative "5~ (s denotes the arc length) and the
normal derivative “-1,” the conditions (3.21) are

s = “Pis — Yin ,
9_:

{3.22}

“Pin * Yis

The right hand sides in (3.22) are Cy,(20) functions because of (312) and
(3.15). In addition we have the bounds

(3.23) Igis +Winlg,,(30) + 1Pin-islc,(om) ¢<cfls Ig,, +Whig,, H

Joachim A. Nitsche ig

(3.22,) can be rewritten as a condition on & because of the following fact:
The function  is defined by (3.10). Because of the assumption h € L, we have

(3.24) gwe_,_ = ,@ h = 0
Therefore there exists a function ¥, unigue up to a constant, such that
(3.25) ¥e = Y

wWe may normalize y such that
(3.26) mmx = 0 .

The regularity of i leads to X € C2(@R). Therefore the boundary conditions
{3.21) have the structure

¢ $o -9 - X
{3.27) on )
G = Oy ~Pm + Yis

with the regularity ®p € C, (800, @y € Cy2{20) and the bound

i

(3.28) Edo i, (a0 + ! dulc, (a0 ¢ € {us iy, + 1 hig,, }

By the aid of Theorem 2.5 we conclude: The solution ¢ of the boundsry value
problem (3.20), (3.21), (3.22) respective {3.21), (3.27) has the regularity
¢ eCsy, the norm is bounded by - choosing the additive constant
appropriately

(3.29) bdig,, § clielg,, + 1hig,, )

Going back to the definition of U {3.17), (3.18) and teking into account the
estimates of U - see Lemma 3.3 - the bound (3.6) concerning u is proved.

It remains to consider the function P defined by (3.19). For any domain
£ cc 2 the bound

{3.30) IPIg,,() ¢ ¢ idic,,

with ¢ = c() is obvious. Thus it is only necessary to consider domains
“near” to 9. In view of the typicel arguments mentioned above it suffices
to prove the following lemma which may be considered as a counterpart of
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Lemma 1.6. Here B; denote balls of radii ry » 0 with center xe T, By the
upper half-balls snd T; the corresponding intersections with T.

Lemma 3.4: Let ¢ be given biharmonic in Bs" and with the regularity P e
C2.(Bs*). There exists a function P being & solution of the Cauchy-Riemann-
equations (3.19) which admits choosing the additive constant appropriately
the estimate:

(331)  IPIg,, (B, ¢ cl®lic,,@B,")

Proof: We put Q = Ad. In terms of the theory of one compiex variable in or -
der to solve (319) we have to find the imaginary part P of an analytic func-
tion F(z) {(with z = % + 1Y)

(3.32) F(2) = 02 + P2
such that F is analylic in By'. We consider the function

F(2) ©oat [ (5 -2 )" 0ff,0) df

L}

{(3.33)
iz + i1B@

(The interval of integration is Ts). Obviousty f is analytic in By", and the
real part {i coincides with 0 on T;. In the standard way the estimates

N80y, @, *+ 1PIc, 6.0 £

(3.34) < ¢l g, ,(Ts)

¢ clolg,,(B,,)

are derived. The difference ¢ := fi - 0 is harmonic in B;" and vanishes on Ts.
By Schwarz” reflection principle g can be extended to a harmonic (continu-
ous) function in all of Bs. Because of Weyl's lemma any (arbitrary strong)
norm of q in B, is bounded by any (arbitrary week) norm of q in Bs. Using the
Cauchy- resp. Poisson-integral-formule for the domain B, we conclude:
There exists an analytic function

{(3.35) f(z) = g{2) + ipl@
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defined in B, such that the Cq5(By")-norm of p is bounded according to (3.31).
The function P = P + p has he properties stated in the lemma. ®

Appendix A: (see Frank - v. Mises (1930))
Let u be biharmonic in the half ball B°. Our aim is to construct two functions
v,w harmonic in B° such that the representation

(A1) U = V+XgW

is valid. We will use for x € R" the splitting x = (%, F) with X € R and yeR.
Partisl differentiation of a function z = 2(x, §) with respect to §==x, is de-
noted by zjx = 8y2, if necesssry we write also (82X, F) etc.. The Laplace-
operator with respect to the first {n-1) variables is denoted by

{A.2) A*z = aM,NsE

1f v and w are harmonic, as we assume for the moment, we get from (A1)
(A3) Au = 2wy = 28W .

Thus we have the necessary condition for w:

{A.4) 20w = Au

For convenience we introduce the abbreviation P = Au. From {A.4) it follows

(AS5) Wi, ) = ,?c.", ndn + W

with W depending only on the n-1 verisbles %. By applying the Laplace oper-
ator we get from (A.S)

e ABWGP = HS*E? W + BPNE P + (AW .
Since P = Au is harmonic it is
(A7) A = -3

With (A.7) we find
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(he) [P man - @R T + @WK

and further

(A.9) ABWNEF) = (BP)R,0) + (A*W)(R) .
Now let W = W(x) be o particular solution of

{A.10) A*W = (3PN, 0)

which always exists. Then the function w defined by (A.5) is harmonic. It re-
mains to show that the difference

(A1) y =  U-KgW
is harmonic. Because of Aw = 0 we get
Ay = AU - 2Win

(A.12)
ﬁ = Nﬁdi -

By the very construction of w - see (A.4), (A5) - the right hand side in (A.12)
vanishes. @

In the above derivation we did not teke care of any regularity assumptions.
we could have thought of functions sufficient!y smooth. Actually in section
2 the representation of a biharmonic function was just the motivation for
introducing v, w resp. ¥, w etc..

Appendix B:
Let Fq € Coy be given. It is possible to choose a function G € Cq., such that Fy
admits the representation )

(B.1) Fo = -V&

and

(B.2) 160c,, ¢ clfolg,,
holds true.
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without loss of generalily we may assume that § is contained in the unit
cube

{B.3) ] = ?_oAxi_Qlu_.m...;i.

in order to construct G we extend Fo to ®Fg defined in Q - see Stein {1970),
p. 175, p. 194 — such that

(B4) WFolgy@m ¢ ¢ IFolc,,

holds true. Using the splitting X = (x, F) of Appendix A we define G by

0 fori=1, . n-1,
(B5) Gl - ﬁ

Xn .
..._. Folx , §)d§ fori=n

Dbviously G restricted to f has the properiies (B.1), (B.2).

Bibliography:

Agmon, 5.; Douglis, A.; Nierenberg, L. {1959}

Estimates near the boundary fer solutions of elliptic partial differential
equations satisfying general boundary conditions I

Comm. Pure Appl. Math. 12, 623-227 (1959)

Frank, P.; Mises, R. v. (1930)
Die Differential- und Integralgleichungen der Mechanik und Physik 1
F. vieweg & Sohn, Braunschweig {1930}

Giaquinta, M. (1983)

Multiple integrals in the calculus of variations and nonlinear elliptic
systems

Annals of Mathematics Studies, Princeton Univ. Press, Princeton (1983)

Gilbarg, D.; Trudinger, N. §. (1972)
Elliptic Partial Differential Equations of Second Order
Springer Verlag, Berlin-Heidelberg-New York {1977)

Morrey, C. B. (1966)
Multiple integrals in the calculus of variations
Springer Verlag, Berlin (1966)



24 DIRECT PROOFS OF SOME UNUSUAL SHIFT-THEOREMS

Schulz, F. (1981)

Uber elliptische Monge-Amperesche Differentialgieichungen mit einer
Bemerkung zum Weylschen Einbettungsproblem

Nachrichten der Akedemie der Wissenschaften in Gottingen, 93-108 {1961)

Stein, E. M. (1970) g
Singulsr integrels and dif ferentiability properties of functions
Princeten Univ. Press, Princeton, New Jersey {1970)

Prof. Dr. Joachim A. Nitsche
Institut Tir Angewendte Mathematik
Hermann-Herder-Strade 10
7800 - Freiburg i Breisgeu
Bundesrepublik Deutschiand



