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0. Introduction

Let u be the solution of a second order elliptic bound-
ary value problem and let u, = wsc € m5 be the corre-
sponding Ritz resp. finite element approximation onto the
space ms . Asking for bﬂﬁmmnwam«mm of Uy, itself or the
error u-u, for approximation spaces mr of order at
least 3 , i.e. for finlte elements which are at least
plecewise quadratics, the following results are to be men-
tioned:

(1) 1In Scott [9] for N =2 dimensions it is proven

(0.1) zﬁaESC:F < c¢ h inf |v(u-%)]

L ¢
Mmmww..h )

The proof is based on a careful analysis of the approxima-
bility of the Green's function in the norm of iw 1

(i1) In Nitsche [6] for arbitrary dimensions the a priori
estimate

(0.2) |IRyul, + blv(Ru), mi__m__v +£;£FL

o0

was shown. Generalyzing earlier results of Natterer the
proof is based on the extensive use of certain weighted
norms which are in the case of finite elements strongly
connected with h8u50ﬂ5m.

(111) In Schatz-Wahlbin [87] the estimate

(0.3)  IRyull, s ellull,
. v )
is proven. The method used is somehow between the other

two mentioned above.



The first ailm of the present paper is to show that the 1 1. Notations, Finite Elements

estimate (0.3) can be derived directly following the lines In the following 0 mmmz denotes a bounded domain with

of our former paper with the only difference that whenever boundary 20 sufficiently smooth. For any ' ca let

the gradient of u enters the formulae then partial inte- zwno_v be the Sobolev space of functions 5m<wnm. L -inte-
gration has to be applied. Actually this happens only in grable derivatives of order up to k . The norms are indi-
three places. In order to give a self-contained representa- cated by the corresponding subscripts. In the case p =2
tion we repeat the arguments of our paper, the only changes we also adopt H (a') = Ewﬁa_v . The norms then are written

are explained in Remarks 5 and 6. For the sake of simplici- shortly

ty resp. clearness we give the analysis in Section > for

(1) Nl g = ]

the Laplacian serving as a model problem. The case of a zwsa_v

general second-order equation causes no additional aiffi- ) .
In addition we will use the abbreviation for boundary

culties, this is discussed in Section 6. The proof of a

norms:
crucial lemma was skipped in our former paper. It is given
in detail in Section 4. (1.2) _._F.o4 = 0y -
sy _}.NA an')
The second aim of this paper is to show the boundedness of Moreover, ' 1is skipped in case of o' =0 and k in
the Ritz operator in Hoelder- resp. Lipsehitz spaces. These case of k =0 .

spaces are the adequate ones in treating nonlinear ellip-
The use of weighted norms resp. semi-norms will be essen-

tic problems. The boundedness of the Ritz operator in the
tial. They are defined by

corresponding norms at least simplifies the analysis of

k_y - 2 :
finite element procedures, in some cases it is essential. (1.3) [lw <=Q.D1 = *_ ﬂ . %% ! p_Uw<p awa\m
fel= )
Q
seemingly up to now Hoelder spaces did not find any atten- X
with u given by
tion in the finite element literature. Corresponding to
_m 2

this a priori estimates or error estimates in the norms of (1.4) pu o= pix) = _Mxxo + p

these spaces do not exist in the literature. —
Axo €0, p>0). The boundary semi-norms

*._9.0_ are

defined in the corresponding way.

By T, 2 subdivision of { 1into generalized simplices

A is meant, 1.e. A 1is a simplex if A intersects a0



in at most a finite number of points and otherwise one of
the faces may be curved. ds is called yx-regular if to any
ey there are two spheres of diameters xlus and h
such that A contains the one and is contained in the

other.

The finite element spaces S, = mmﬂsv we will work with
have the following structure: Let m be an integer

fixed. Any element of mw is continuous in o and the re-
striction to A € Ty is a polynomial of degree less than
m . In curved elements we use isoparametric modifications
as discussed by CIARLET-RAVIART [2] , ZLAMAL [10] . m:
is the intersection of ms and mw , the closure in mh

of the functions with compact support.

By construction we have S, c H; but in general S & H

for k = 2 . It is useful to introduce the spaces

mw = mwﬁﬁﬁv consisting of functions the restriction of
which to any A 1is in H_(a) . Obviously S, gH, for
all k .

Parallel to above we use 'broken' seminorms

1/2
k k. .2
vt =4 2 v ,
19V, ,r_m; it
(1.5)

i 1/2
_4W<_ - ﬁ 5 _qx<_m sw .

* LeTy, wE

2. Approximation Theory in Weighted Norms

In the estimates of the next sections ¢, ¢ ete. will

1
denote generic constants which may differ at different lo-
cations. Unless otherwise stated they depend only on (1)

the domain n , (ii) the dimension N, (iii) the regularity

parameter u , and (iv) the order m .

Essential is the fact that the function u (l.4) does not
change too fast in any A € ﬂw if p 1is not small com-

pared with h :

Lemma 1: Let p = h . Then for any A € Iy

(P M, = sup pu(x) s 6 inf u(x) = 6 ,
2 xea XEA Bé

Proof: Let X, x € A be points where p attains its

maximum and minimum. Then
(2.2) Wy = pu(x) = p(x) + (X-x) - vp(X) .

Now we have

(2.3) |ou(X)| = m_wVNo_ < mﬂbw\m
and
(2.4) |¥-x| sh s p = mw\m
leeding to

Hy Syt mmw\m mM\m
(2.5)
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Next let v € c®n H; be given and X € S, an appropriate

interpolation. Then the estimate

(2.6) IV (-l () = © smﬂH-xV:4H<=mmﬁpu

for any £ € Ty and 0 <k <1 sm is well known. Because

of Lemma 1 we derive from this
Kio v la| 2(1-k), 1 2
(2.7) le™ (v x\=n.b <sc 6 h |le <=9.D ;
The power o will be within the range |a] < N+1 . Thus
we drop the factor m_p_. Summation over all A € Ty gives

Lemma 2: Let p =h . To any V € c®n mw there is a

X € ms according to

ke @ 1-ky_ 1. 0
(2.8) ¥ (v-xIS s e n TNt

for 0<k<l=<m.'’ "

o]

Remark 1: Since (2.7) is valid also for v € c°n H{ N H;
Q

with X € mv the lemma remains valid in this situation.

For any W € mwﬁbv the trace theorem gives

(2.9) =z=mmﬂwbu = c{n” :mmADV * szag=mmﬁbvw :

Using the arguments of above we get

Corollary 2: Under the assumptions of Lemma 2

1-k- '
(2.10)  |ov-0]L sen bl

is valid in addition.

The proof of the next lemma and corollary follows the same

lines and is omitted here.

Lemma 3: For X € md and 0 < k <1 < m inverse rela-

tions of the type

p- (1K)

) k
< !
(2.11) Ilv x=a <ec flw x=p

hold tirue.

Corollary 3: In addition to (2:11%

1
(2.12) o'yl = c no(1-keg) :qwx=m

holds true. Here k =1 1is accepted.

In the subsequent sections we will apply these approxima-
tion results to functions v of the structure v = tune
with o € m: . Then a certain super-approximability pro-

perty holds:

Lemma 4: Let o € mwH be given. The function u Mo can

be approximated by an element X € Sy according to

B o -
e (e X2+ 19 (u G- X1
(2.13)

+ 0210w %) | = 2ol + lIvell) -

Proof: We mmvw% Lemma 2 and Corollary 2 with 1 = m and

get the bound
\ -1y m, -
(2.14) e B (W%

for the three terms on the left hand side in (2.1%). Since
¢ 1s piecewise a polynomial of degree less than m and

because of

(2.15) D8 %] s ¢ 15172



Leibniz’' rule gives

m-1 5
< B 7 wll ym-n

(2.16) o™ (u ™™

(W% =

Now we apply Lemma % for the terms with

(27) "W, < of

Using finally the obvious inequality for

=B

(2.18) |

| :A.U+m = =.=A.Vu
we end up with
i ) m-1
(2.19) o' ( B
1
and therefore

= - .
(2.20) e BTN W%, S

-n

- l-m
w %)l s efo Mol ,, + Th

=1 3

190l gimon) -

g >0

l-n n-m
o™ "limell  }

< o*ﬁs\ova-m,+awpﬁw\uua-uwﬁ=e=p+H + loall } -

The first brackets on the right hand side are bounded by

mh/p since h < p 1is assumed.

As was pointed out in the introduction weighted norms are

strongly connected with the ﬁRWSOHE. First we show

Lemma 5: Let o >

o=

2
L -

oa

2 -2at+N
(2.21) VIS = e o7 vl

Proof: We can estimate

. 2 2 r -a
(2.22) lvilg = IVl J) w® ax

Q

and further with r denoting the distance

. Then for any v €L

00 e e

|x-x,1

(r24p2)@ -1

IJ e ax

A
el
O— §

(2.23)

Aﬁ+vvz|plmp dr

IA
o
Qe 8

dr

Por elements in the space m: there is the counterpart:

Lemma 6: Let a > W and h < p . Then for
inequality
2 2 -N 2
(2.24)  IdE = 6% b sup Ixi
o0 x en ¢
o
holds true.

Proof: Let X, € {1 be chosen such that

(2.25) X(x,) = * [l

and let A, be one of the simplices with

X € Sy

X

]

€&, -

X restricted to bd is a polynomial of finite degree,

i.e. an element of a finite dimensional space.

case any two norms are equivalent. Since
h there is a constant ¢ depending only

m such that

(2.26) -N

I () =ecn

,_M
0 : H‘_m_ﬁb

Because of the choice of x it is for

(o]

\ 2 2 2

(2.27) p© = u(x; = p° + h" = 2p

Therefore we get further

o 34

&

on

is of size

n

X € 8,

In this

»Z.u

the



SN Dgayid
h X,
p X

The last two lemmata show that the g-norm and

the L_-norm are equivalent in the spaces

11

%, The Boundedness of the Ritz Projection

In this section we restrict ourselves to the model problem
-fu = f in Qs

(3.1)

The weak formulation is:

o)
Find u € :w such that

.

(3.2) D{u,v: = {f,v.

o
holds for all Vv € :H .

Here D{(...) denotes the Dirichlet integral

{3737 Dfiu. v} = (gu,9v) = %% 5. :hw <dw dx .
9]

The Ritz-approximation ¢ = w:: € mw is characterized by

the relation

0
(3.4} D(esx) = (£f,x) for X €8,
or alternately by

o
(3.5) D{g.x) = Dlu,x} for X € mw P

Remark %: Throughout this section the letter  denotes

the Ritz-approximation on u .

In the first step of our analysis we derive a bound for

the gradient of « 1in a weighted norm. It is

L
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lowl2 = (vo,u™® ve)
(3.6) = D(g,n %) - (v, v %)
= D(p,u %p) + w %% .
Because of
(3.7) A s e ot
we get
3 - 2
(3.8) loolls, < Dl %) + cllollg,; -

Next we use the identity

D(p,pu %) = Dig.u Fp-%) -
(3.9)

-D(u, p %p-x) + D(u,u %)

valid for any X € Sy because of (3.5) . By the aid of

Schwarz' inequality in the form
(3.10) ID(v.w)] = llovl llowll_g

and Lemma U we find for the first term on the right hand

side of (3.9) with % chosen appropriately

1A
o
o |5

| D™ %=X o) |
(3.11)

=c

o |o

{Ivol? + o5} -

OQur aim is to avoid any derivatives of u in the esti-
mates. Therefore we have to apply partial integration in

order to handle the two other terms in (3.9). We get

{Ivoll, + lellgy ool =

13

D(u,u % p-x) = = % cntupelva d o0
BETy 34
(3.12)

-z %% u £(p %p-x) dx
bmﬁj 2

which may be estimated by

IDCu %=Xl = Jul) [9(n™%-x)]!, +

(3.13)

+ fully llalu™%e-x

If Y% 1is chosen according to Lemma 4 then

;9+kw ’

I MR T

IQ < U
D %-%)| s o llowl, +

(3.14)

In order to shorten the formulae we introduce

o = 2 -1 1 2 2
(3.15)  N_(w) := {072l 4 07 ju) e i, }R

Then we come to - note h = p -

(3.16) DG, %] s o Binwll + el } + o N (.

Following the same lines but this time using Lemma 3 and

Corollary > we get

i D(u,u ™ =
(317) D %) s ofllnelly + Melly,y} No(w) -
Schwarz ' inequality in the form

/ = R T
(3.18) [AB| < 5 A" + 73 B
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for 0 < 8 <1 leads to
" =0 2 2 (4] 2
(3.19)  |D(wu )| = s{lvall + Mellgy,} + § Vg™ -

Now we combine (3.9). (3.11), (3.16) and (3.19) with (3.8).
This gives

(.20 Mool = (o B+ 6) Towll + elloley + § 1% -

We choose & = 1/3 and impose the condition on p

(3.21) p 2 yh with y, = max(l,3¢;) .
Then we get .

2 2 2
(%28 :ﬁﬁ:p < om_He=9+F +c znﬁsu ;

Remark 4: In (3.20) we used for the constant in front of

¥

: 6:9 the numbering ow since this special constant

appeared in the condition (3.21). Similarily the constant

¢, in front of Jol g Spposrs in a further condition.

Remark 5: In the analysis glven in [6] we did not use

partial integration. There :4::9 enters instead of
N (u) .
LW

In the second step we introduce the auxiliary function Ww

defined by

- o= tLQIHS in 9] B

{3.23)
w =20 on af) .

The reason is obvious since then

15

(3.24) o>, ; = D(w.w)

) 0
which may be rewritten with ¥ € m: arbitrary

2

(3.25)  olly,,

= D{ep.w-x%) - D{u,w-x) + D(u,w) .

Using the definition of w we get at once for the last
term on the right hand side

Diu.w' =
i/ AE_GVQU*._.

(3.26)

1A

2 1 2
A ]
ol ) + g5 2, -
Using (3.22) we get for the first term with 0 < 8 < 1

[P w-x)] < Hfivell v (w-00_

e 1 \
(3.27) s 8wl + 73 __q:?x;_wn

.
none 2 1 2
om m__a:_ﬂ+H + C Zc_.a.nv + Mmh_dnisxvﬁ_mc..

A

Finally, the middle term on the right hand side of (3.25)

has to be treated by partial integration. Similar to above

we come to

|Diwaw-% |

1A

ul ' eiw-x31" 2 w0
(3.28) [ul, fete-0 11, + fully, av™(w-0l
>

A

N (u)

4 + rwqﬁzlxv_.m + sm:qmﬁz-xJ:.N
—% s/

B s of ti :
By means of the last three estimates we derive from {3.25)
N

(o
e { ¥
3 ZQ,c‘ +

e i
= laey sllel, | +
e .
(3-29) *: MAIq_sa»vzwn + 5_qns;wi_m +
-a

o
+ h%||v E-xv__hL .
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The choice a|H =2 + mom leads to

IA

c N Azgm + n#:qﬁs|xv:w9 + ﬁ_qﬁzsxu_Hw T

2
lollZ, "

(3.30) - »
e w0l -

Remark 6: The counterpart of the last inequality in our

former analysis was

¢ \ 2 Y= 2 2
(3.31) gl = clulZ,) + clloullg + ellew-01Z, -

The third step consists in analyzing the terms with w - X

in (3.%0) which still depend on ¢ since w does. Since

¢ and hence tznlwe is in H; ‘the shift theorem guaran-

ﬁmmmSm :u .EQZW<mmmmcamQEwuuw.m.wwwmmman:mnl
ratic finite elements are used. Therefore we can choose X

according to Lemma 2 and Corollary 2 with 1 = 3 and get

from (3.30)

(3.32) o2,y < e N (2 + e nu?

The next section is devoted to the proof of

Lemma 7: TLet o be in the range N/2 < o < (N+1)/2 . Then

fol o)
for any w € mF nH with /fw € :H the a priori estimate

2

(3.33)  llowll_y < loawll_g + ¢ o 2Newll_g_,

holds true

Because of the definition of w (3.23) we find

(3.34) Newll_y_y = llollyy

17

and
loaell_ = v (™t o)ll_
(3.35) < oflloll 45 + ool 0}
< -ef

e 0 {loll,y + lvall} -
Now using (3.22) we derive from (3.32)
Fm
(3:36)  Iollgyy = o3 T Bollgqy + @ N0 -
In analogy to (%.21) we impose the side constraint
(3.37) p2y,h with vy, = max(y,,V2e3)
on p . This leads to

Theorem 8: For o € (N/2,(N+1)/2) and under the condition

p 2y, n the (a+l)-norm of the Ritz-approximation

% = Rou is bounded by the composed o-norm .znn.v of u

itself

(3.38) lellyy = e N ()

with c¢ independent of h , p and the point X, -
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4, Proof of Lemma 7T
The general shift theorem in the theory of elliptic equa-

tions includes the two statements

o]
Let Vv € mH n mm . Then

5 2
(4.1) lle“vil = ejlevl .
B Th
Let v € xp n mu . en
(4.2) o2vll < e{lvavll + lavl} -

A direct consequence 1is
o o)
Lemma 9: Let Vv € EH n mm resp. V € mw n mu . Then in

weighted norms for g arbitrary

A

.3) 9%l = o{lavlly + Iovligyy + Ivlg2} -

1A

.4y Pl = e{llwavily + Nevilg,y + Wovlige + I¥lgs}

are valid.

Proof: We will give the details only for (4.%), the second
case is handled in the same way. For convenience we use

¢ = 8/2 . We can rewrite the integrand in

(.5 eig =z ] (™8, )7 dx
? 9]
by
.[Im<u:h o Atnm.ﬂvu..rn - Cwﬂr—lmvx - <Wm§lnv”~. =
(4.6)

s d.nr_.lmV”:h .

Therefore we get using (2.15)

19
1) oPvlly = 29SO+ ellivvll,y + IVllg,e) -

In the similar way it is

(4.8) HEV) = w fav + 2oven(u ) + vyt

leading to

(1.9) eSOl = 2llavllg + ellvvllg,, + IVlg,p) -
(4.7) together with (4.9) gives (4.3). #

After these preparations we go back to the function w
defined by (3.23) and the a priori estimate stated in

Lemma 7. By Lemma 9 we have

Io2wll_y = efllwawll_y + lewll_gpq + Iowll_pp +
(4.10)
+ lwll_gys) -
We have at once
(4.11)  fewll__,, = 0”2 flawl
# -kl =R e | ?

In order to complete the proof of Lemma ¥ we have to show

that the sum

(.12) Iowl_gyp + Il

is bounded by the right hand side of (3.33%). Our choice of

n leads to
(4.1%) wGlzv <-a+2<phN) .

Therefore the weight -g+2 of the term ew in (4.12) is

positive in case of N = 2,3 dimensions and negative for
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N = 4 dimensions. Moreover, in case of N = % dimensions

we have

(4.14) 0« - g+ 2< M -1 A

According to this the cases of 2,J or higher dimension
have to be treated separately. This will be clearer because

of the following

o
Lemma 10: Let v € H N H, . Then
(i} for 3 < C fthe norms =q<=m and || =m+H are com-
parable modulo :uu:mup , il.e.
dovlly s o{Ivllg,y + levilg )
B g+l B-1

(4.15)

gy = e{liovll + levlgy}

(ii) for 0 < 3 < W - 1{N>2) Dboth terms are bounded by

the last, i.e.

(4.16) lovllg + Ivllgyy s ellevilgy -

Proof: The identity

(4.17) =q<=w = D(v,u Bv) - %L veveou P dx
Q
leads to
(4.15) :qqzw = (v.-av)g + W %% v B ax .
Q

Direct differentiation gives- r = |x-x|

- —R- 2
(4.19) oP - -2p wBBN 07+ (N-28-2) £} .

Thus in case (i} ht|m is bounded from above and below by

21

-p-1

cu giving
ovlZ < (vo-av), + VI3, .
B B B+l
(4.20)
2
2 (vo-av)g +ociivllg,, -
This proves (4.16) since
2 1 2
(h.21)  [(vi-a)gl = 8vIE,, + pglavis, ¥
In case (ii) we have
(4.22) B o= otyBl

with a positive constant c¢' giving

B . A
lloviig + e'llvlig,, = (vo-av)g
(4.23)
2 1 2
g1t levlgy - #

We are now able to give a short proof of Lemma 7 for N = 3
dimensions. Because of (4.14) and the second part of

Lemma 10 we have

=q£=nﬁ+m + | =|P+u = o=b£=;ﬂ+w
(4.24)

-2
scp :bi:nﬁqH . #

Now let us consider the case of N = 2 dimensions. We will

give an explicite proof of

Corollary 9: Under the assumptions of Lemma 9 the terms

vl in (4.3) resp. ||v|| in (4.4) can be dropped in
p+2 — B+3 — SaH Be Gropped 2B

o]
case of N = 2 dimensions, provided Av € :H §
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Remark 7: The restriction to N = 2 dimensions is un-

necessary. But we will need it only in this case.

Before we give the proof let us finish the proof of

Lemma 7. We need now - see (4.12) - a bound of =cz=-a+m
only. In the present case we have W c-pn+ 2 <1 . Let

Py > 2 be fixed with o-1 < m\ﬁm . Now we apply Hoelder's

inequality with p = vm\m > 1 and get

zqz=mﬂ+m %% tnum_qz_m dx

(4.25)

1A

v, {{ ulo-2)a g1/
2

with 1/q = 1 - f&ﬁ. Direct calculation - see the proof

of Lemma 5 - leads to

(4.26) owll_pqp = ¢ o™ Jlowlly,

: Py
with
(4.27) A=1-a+2/ppy -

Next let Py be defined by
(4.28) (vpuH\m+H>J .

By the aid of standard a priori estimates - see MORREY ﬁuu

pp.80 and 157 - we get

2
(4.29) [owlly, = cllvwlly,
P Py

and

23

: 2
(4.30) lo%wlly, = cllanlly, -
Py Py
In our case we have 1 < p; < 2 . Therefore we may once

more apply Hoelder's inequality to

p -(a+l)p,/2
() el = [ ot PP 2 V" ax
vH

this time with p = m\ﬁH . Similar to above we get

(4.32) =b£=ﬁ =c Ult:hi:lplw
Py
with
(4.33) peleng -2 4
Po

The combination of (4.26), (4.29), (4.30), and (4.32)

leads to

-2y |
(4.34) lvwll_ 4o = ¢ o llewli_ 1

what finishes the proof of Lemma 7 for N = 2 dimensions.

We will later on need the trace theorem in weighted norms

in the form

Lemma 11: Let v € H, . Then for § > 0

1

. -1
_m+~\m < u:ﬂ«:w + ce(l+s ) | :m+~

Proof': (4.35) is shown by applying the standard trace

theorem

ol
=

(n.36)  [vIZ = (VP + v oV}

to V = tlm\mlw\t<



24

Proof of Corollary 9: In N = 2 dimensions - we denote

the variables by x,y - it 1is

2 2
WQMq . ] ve )

= lmA<XM<w%| Xy

= _he.
(4.37)

|Mﬁﬁ<%<xxv% = A<M<xwuxw

and therefore

]

202 jagll® -8
loPvly - laviiy =2 § w° vy avy

on
(4.28)

-8 -B
+ 2 H% <%ﬁ<xxﬁt vw - <N%At VNW dxdy
Q
resp.

™ 2
(4.39) I92VIE - Navils = 2 § wPvyav v elivvllgyy 1oVl -
o G1e]

In order to analyze the poundary integral we introduce the
arc length s and the angle vy = y(s) Dbetween the tangent

and the x-axis. Further v_.V denote the tangential and

s’'n
normal differentiation. Because of v =0 on aQ we have

(4.40) Ve ={ -sin v}V, Vv, = cos v Vv,

and with » = y' being the curvature of 00

2 .2
(4.41) m<%n<x"u|mﬁsﬂoom yv, + sin y cos vy <d<5mw ds .

We insert this in the boundary integral and apply partial

2 =
integration becuase of Vv Vv . = h<ﬂv m\m . Then we get

-8 2
(4.42) |2 % W vpav, | = clovlis, /m -
wo

With the help of Lemma 11 then (4.39) leads to
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2 2 2 2 42 2
(5.43)  IoVIG - llavily s 2slivSvilg + % lvvl

This proves (4.3) without the last term on the right hand

side.

In proving the second part of Corollary 9 we will skip
some of the details. In the corresponding way to above we

get the counterpart of (4,.39).

2 2 =
zqw<=m - lvaviig = 2 % " mﬂ<ww1<xxv v, +
(4.4%) - aQ

2 e '
+ello®vilg,y Ivovlly -

Oon an we have for v arbitrary with the abbreviations

s 3=s8in y , ¢ 1= CO5 v
2 2
<mm = C <xw + 2sc <N% + s <%% + K <5 ¥
2 &
(8.45) Vag * ~0R V. ¥ (e=-s7) Vg * 56 Vyg o Yg s
2 2
<bd =8 <xM - 2sc <N% + e <%% ‘
The condition v = 0 implies Wy, = Vg = 0 . In addition
Av = 0 implies Vin = ® Vi oe Therefore we derive
<ew = Vg = 2p cos 2y v, + 2 sin 2y Yo
(4.46)
N<M.Jhﬂ = =2y sin 2y v, o+ 2 cos 2y Vs .

Similar to above we then get

A

(A7) § W8 (vy-vyy) avyy |
an

2,2 2 5
oﬁ_a <_m+H\m + _q<_m+P\mw

and therefore with Lemma 11
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V15 - lvaviis s 289?vi +
(4.48)

c 2 _p2 2
+ IV VIG + Ieviig,)

resp.
2
(4.49) o2y s e{lvavily + 5%VIig,, + lovllg,,) -

Now we have to apply the first part of Corollary 9 to the

second term on the right hand side of (4.49) #

Remark 8: bdo<ﬁ we derived the a priori estimates needed
for functions sufficiently smooth only. For instance
(4.37) holds only for functions having third derivatives.
By compactness arguments the validity of the estimates for

functions with the stated regularity is shown.

The case of N = 4 dimensions hardly is of practical im-
portance. Therefore we give only an outline of the proof

for this case. In view of Lemma 10 and because of (4.13)

it is only necessary to bound :£=|p+u in terms of

[| awr] 1+ 1i.e. to find an upper bound of

-

2
~g-1

(4.50) an) = sup |

2 s / Nl

o]
where the supremum is to be taken over all v g mp n mm .

Obviously the supremum is attained for an eigenfunction

of the problem

a+l

AT Aav) = A7 v in a ,

(4.51)
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In this way we ask for a lower bound of the smallest
eigenvalue of problem (4.51). By standard arguments the
monotonicity of A with respect to the domain, i.e.

wﬁayu < wﬁomv in case of 0; 0, , is shown. Therefore
an upper bound for (q) is given by the corresponding A
for the ball with center in *g and radius d = diameter
(@) . The eigenfunction corresponding to the lowest eigen-

value then depends only on r = _xlxo_ (or at least one

does). Using the representation

r
(4.52) gV ~ V' = wpaz % ghk AV ds
0]
we get without difficulties
4.53) lovll, o = ¢ o 2llavi
(4.53 vl 42 Sc P gl

which in view of Lemma 10 bounds =<:19+w in the same

way.
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5. The Boundedness of the Ritz Approximation in Hoelder
Spaces

The Laplacian like any elliptic operaftor is not one to one

with respect to the spaces OW = owﬁov consisting of

functions having continuous derivatives up to order k in

m . We will also abbreviate C = oo and denote by m the

space of continuous functions vanishing on the boundary

o)

3q . Of course the image f = pu of any u € € N ow+m

(k = 0) is in ck put to £ e ¢ there may not be an
o )

original u ¢ C I oﬁ+m as is demonstrated in two dimen-

sions by the counterexample
2.2 2..2v,1/2
(5.1) w = (x%-y?) |nGPay®) | Y

with n the unit sphere.

L.

The situation 1s changed in case of Hoelder- (resp. Lip-
schitz-) spaces. These spaces, denoted by gl _ or.whov
with A according to 0 < x =1 . consist of all func-
tions k-times continuously differentiable such that the

highest derivatives are Hoelder-continuous to the expo-

nent ) . In ow.y a norm is given by
(5.2) e, = 7 0%l + oz o]
c lg =k w |gf=k = A

with

(5.3} ﬁsuy T — ﬁﬁxvch%
. X.y€0  |x-¥y|
XAY
A is a Banach space. The

(o]
Laplacian is a one to one mapping of CN ox+m.w

Equipped with this norm aw.

into
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k.

C . Especially

(5.4) |l = -2t < cllf]] ,
ox+m.» =ox+m.y : ow.y

Such an a priori estimate is referred to 'Schauder esti-

mate'.

The aim of this section is the proof of corresponding

estimates with u replaced by o = mz: being the Ritz

approximation.

A first result in this direction is more or less a direct
consequence of Theorem & . See the proof of Lemma 5 - the

right hand side of (3.38) is bounded by

N
-t
(5.5) W ses CwTtl

A

By Lemma 6 we know
1]

(5.6) ol sc o7

mmm lollgsr -

Besides (3.37) p is arbitrary. Now we fix p = yph and

get

(5-7) =6=H = =WUC=H = o:ﬁ:ﬁ »
oo (o] oo

This gives

Theorem 12: The Ritz operator wm.UOﬁsama as mapping of

€ into itself.

L are compactly embedded on C . There s

e

The spaces C
a general principle to bound the norm in C of a lin-

ear projection operator by means of the norm in C which
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we will discuss now. The situation is that we have two

Banach spaces xp_xm

compactly embedded in xp . Further we have a collection

(with norms [.{l; » -liy) with X,

_mswo <h =1} of subspaces of X, . Let approximation-

and T be introduced accord-

and inverse-quantities h

%h
ing to

(A) To any y € X, there is an n € mﬁ such that simul-

taneously

H_%ldq_w = QU__%__M s

(5.8)
..=3=m = 0H=%=m

is valid with independent of h .

¢

(I) For any X € S, a Bernstein type inequality holds

(5.9) Ixlly = mplixliy -

We will 'say' the collection mmww fulfills the AI-con-
dition if

(5.10) K i=sUp op 7, < -

Remark 9: Under 'reasonable' assumptions will tend

%h

to zero with h . For finite dimensional spaces S the

h

quantities are finite since then any two norms are

h
equivalent. With h - O resp. &im:v - o then 1.
will also tend to infinity. The AI-condition just balances

this.

The mentioned principle is
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Lemma 1%: Let xp.xm be as described above and _mﬁ_ a

collection of subspaces of X, . Further let

_ms : kw - mﬁ~

ators of MH onto ms which are uniformly bounded as

mappings of xp into itself, i.e.

be a collection of linear projection oper-

{5,117} e, | =H
. P = sup =
2 1 o Wiy by

fulfills the AI-

with p, independent of h . If {8y1

condition then [P, | as mapping of X, into itself is

uniformly bounded with

(5.12) 2, Pyl (¢ +3K)
De = 8u T = 5= .
nll2 wxw Tl Fo 1 P

Proof: Because of X, C xw and ms = xm of course w:
is a linear projection of xm into itself. Let ¥y € xm

be given and n € 5, Dbe chosen according to (5.8). Then

(515 :w3%=m = :w:wlj=m E nwzwzm :
Since Ppy-n 18 an element of m: we may apply (5.9)
getting
:mﬁ%:m = 45=TU%|J=H + owzwzm
{5.14)

TA

Pyl + ly-nlly} + eqlvll, -
Now we use the inequality

(5.15)  lw-Pyyll, = (+liPpll)  Anf o iy
JmMU

the proof of which - in order to give a selfecontained
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~

presentation - is as follows: Let »n € m: be arbitrary.

Because of m:ﬂ = 7 we have

~

fy-pypylly = ly-7 - By,
(5.16)
< (1+[Pyfly) lv-wll, -

in (5.15) resp. (5.16) we may use on the right hand side

M=
Because of the assumption (5.11) we get from {5.16)

(5.17) ly-pyll, < (1+py) liy-nlly

and in this way from (5.14)

(5.18) Py, = (2+4p)) mplly=nlly + cjllvly -
Finally using (5.8) W™ come to

(5.19) Ieylly = {(2+p)) o 1y + i} vl -

The norm of any projection operator is bounded from below

by 1 . Therefore we can also bound
(5.20) p, s (JK+c ) py
which is more convenient.

Remark 10: Lemma 13 first was stated in NITSCHE [57] »

It remains to prove

0
bmaamppnbmm:am m:m c¥ . Then with X, =C and

1
o
K.\ the rinite element spaces S, fulfill the AI-

Mw =C

condition.
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The consequence is the final result:

Theorem 15: Assume mv c ox . Then the Ritz operator is

k.

bounded as mapping of C into itself.

Proof of Lemma 14: The finite elements discussed in Sec-

tion 2 are only in C . We will give the proof only for
the case k = O . The case k = 1 follows the same lines
and is omitted here in order to avoid the introduction of
finite elements with higher smoothness. We will show that
the standard interpolation will have the properties needed.

Especially we will show

(5.21) op < L .

First we prove the estimate for Th * Similar to Lemma 3

we have for X € mu,w

(5.22) x|l! = max [ox < c h ¥ .
llv L, Wmﬁ? lv :ﬁsnbv c I HHS

Now let x,y € o be given. In case of |x-y| = h we have

trivially

ﬁW.NUV x.ﬁuﬁle.ﬂu_. = MU|V
|-y |

-
oo
In case of |x-y| <h we come from

(5.24) | x(x)-%(y)| = |x-y] loxll,

to
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Ix()-xly |

|x-y |

IA

o nt {Ixh) g

(5.25)

1A

e n™M X, -
= =]

Now we turn over to the estimation of oy - Referring to

CIARLET [1], pp.43 for details there exists to any A € I}

i A ; . ,
a set of points mwu = wu i g l,...,d0} {J = dim P>
the space of polynomials of degree less than m ) with the
following properties:

( 1) The conditions

(5.26) vpﬁmuq -r; for §=1,...J
define uniquely a polynomial @) of degree less
than m .
ul
(ii1) 1Ir ry = dm coincide with the values in m%

of a function v continuous in  then the

function ¥ defined by

(5.27) X = p?

is continuous in o .

Now let p be the restriction to a A € dw .mwkma of the
interpolation of a function Vv ¢ oo.» . For convenience
let - possibly after a translation - the origin coincide
with one of the corners of A , say mp . Then p has the
structure ‘
(5.28)  p(x) - z & e (v)n I8l

HE :

with

(5.29) B = A
and
(5.30) oﬂﬁ¢v =

The n-regularity of the

form boundedness of the

Since the function Vv =

lation we have

(5.71}

N4
o
U G
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subdivision ﬁw leads to the uni-

om independent of h .

1 is reproduced by the interpo-

1 for |g| =0,
ﬁ 0 for |g] =1.

This gives on the one hand

(5.32) e (v) =

o]

<Ampv

and on the other hand for c¢ with _m_ = 1 a represen-

g
tation
J10ds
(5.33) e (v) = I ¢ (v(2y ) - v(Py ))
- M 1 2
Ty
with some ow also uniformly bounded. With x € £ we
get

(5.34) v(x) - p(x)

0.

For v e C we have

g€
X
v(x) - <ATHV IH,M_M_AE mulwl_- OwAd.v.

(5.35) [vix)-v(p)] = [v], B

Because of |x] =h in

¢ we get with (5.33)



vi,ﬂﬁﬁhmv“

| = ﬁ...w_ = ¢ max _<Amu

1
(5.36)

< c[v], ;L

This proves the first part of the approximation property

X
Oh < g o

(5.8) with
In order to prove the second part we consider firstly two
points x,y contained in one of the simplices 4 . Then
with d = |x-y| we have d sh and
- £
(5.37) p(x) - pty) = v w858 e () .
1<|g|<m s

Because of

(5.38) _xw-MW_.m e a nl8l-t

and - see (5.33)

(6390 le (v)| = e n v},

g

we get
(5.40) lp(x)-p(y)| =c a lewm<u» = oﬂxswﬂr ﬁcuw P

In case of d = |x-y] <h but x € Ly and y € 4, with
hh 7# bm the segment connecting =x and ¥y intersects
only a finite number of 2 € o because of the x-regular-
ity. By estimates similar to above we get for the inter-

polation vy = I,v also then
(5.41) |x()-x(¥)] = e|x-y|*[v], -

In case of d = |x-y| >h and x € &) , ¥ € &, we se-
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lect two corners ww.mz of bﬁ_bm . Then we have

x(x) - x(y) = (x(x)-x(P,)) + (x(Py)-x(Py)) +
(5.42)
+ (x(Py)-x(¥y)) -

According to the choice of wxbm% we have _xumk_ < h

and _wnm%_ = h and therefore

|x(x)-x(p,)| s ¢ wyﬁ<u, "
(5.43)
|%(¥)-%(P )| = ¢ :rﬁ<g> ;

Since ¥ 1is the interpolation on v we have

]

_xﬁwxv-xﬁmwu_

_<ﬁwwv|<ﬁm%u_
(5.44)

A

IS
_wxumw_ m<ur .

We have d = h and _wxuw%* <d + 2h < 3d . In this way

also the second part of (5.8) is proven.
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6. General Second Order Elliptic Equations

In Sections 3 and 4 we presented the rﬁwmnwwuwmm of the
Ritz procedure in case of the Laplacian being the proto-
type of an elliptic differential operator. The same results

hold in the general case with -A replaced by

{613 Au = <o P,

i
ik + b u; + du g

Remark 11: Throughout this section we adopt the summation

convention. Lower indices indicate differentiation with

respect to the corresponding variable.
The assumptions Wmmm%nwbm the coefficients are:

{a.1) Ellipticity: There is a constant g > 0 such

that for all x € 0o and £ € xz

g

(6.2) a'¥g, g, = 5

fe}
Ll o =

holds true.

(a.2) Regularity: The coefficients mwx. bY, and d

fulfill

(6.3) alk e c®l  plegctl, acc )

The letter g is used as an upper bound of all

the corresponding norms.

Remark 12: Assumption (a.2) guarantees that the coeffi-

cients of the formal adjoint operator b* defined by

(6.4) Aw = ~lathyv),

i
T (b <vw + dv

fulfills alsc (a.2).
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The weak formulation of the boundary value problem

Au = [ in 9] "

(6.5)
u =20 on 30
is
o

Find u € mH such that

(6.6) a(u,v) = (f,v)
o

holds for all Vv € mw
with a(.,.) defined by
(6.7) a(v,w) = %% ﬁmuw<wzw + UH<M£ + d <£W dx .

Q

Coresspondingly the (generalized) Ritz approximation

o}
p = m:: € mﬁ is characterized by the relation

o
(6.8) a(eg, ) = (£,x) for X €8y 3

In this generality the function u defined by (6.6) resp.
g defined by (6.8) may not exist or may not be unique.

Therefore necessarily we assume

(a.?) Existence: The problem (6.5) resp. (6.6) possesses

a unigque solution for f Dbeing arbitrary.

By an argument due to SCHATZ ﬁﬂw there is an :o > 0 such
that for h <h_ the Ritz approximation ¢ (6.8) is also

unique.

Now we repeat the arguments of Sections % and 4. The
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counterpart of (3.8) in the form

(6.9)  lvel® = cfale. %) + JollZ,,}

- & O
is a direct consequence of Garding's inequality

(6.10) a(v.v) = m=q<:m - >:<=m

o} =
for any v € mH with m > 0,7 depending only on 4g,q -

Remark 13: The constants ¢ - see the beginning of Sec-
tion 2 -may depend in addition on (v) the bounds q.Q

of the assumptions (a.l). (a.2).

Following the lines of Section 3 we get from (6.9) also

now the final estimate (3.22) of Step 1.

The auxiliary function:; w - see (3.23) - is defined this

time by
(6.11)

The estimates leading to (3.32) are derived in the same

way as before.

Since the shift theorems (4.1), (4.2) are valid with
- A - the Laplacian - replaced by the operator A Lemma 9
is valid with -A replaced by A on the right hand sides.

As before it remains to find bounds of the terms in (4,12)

Following the lines of Section 4 we consider the case of

N = 3 dimensions firstly. In the general case the second

L]

assertion of Lemma 10 has to be changed by the estimate

(6.12)  lovllg + IVlig,; s e{liavil,_y + Ivilgl -

The last term on the right hand side may be treated as was
done in the sequence (4.25) to (4.34), the details are
omitted. In this way the case of N = 3 dimensions 1s

settled.

In accordance to (6.12) the a priori estimates stated in

Corollary 9 have to be modified:

o}

Corollar A: Let v € Hy i H, resp. V € mu n mu and
o}

in addition Av € H; . Then in weighted norms for g ar-

1
bitrary and N = 2 dimensions

(6.13) I°vlly s e{lavllg + vl + IVlgy} -
(6.14)  Iv2vlly < o{IvAvily + WVllgyy + Iovllg,n + IVllg,o} -

Having these shift theorems the final proof of Lemma 7 in
case of a general second order elliptic differential equa-

tion follows the lines of Section 4.

We will not give all the details in order to prove Lem-

ma 9A but concentrate ourselves on the essential point.
What is needed are the counterparts of (4.37) resp. (4.39)
and of (4.4%). By (4.37) the square sum of the second de-
rivatives is bounded by the square of the Laplacian modulo
lower order terms and a divergence term of products of
first and second derivatives. In order to get the counter-

parts we make use of
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Lemma 16: Let ﬁmwxv be a positive definite and symme-

tric matrix according to (6.2) and let (b;,) be a second

order tensor. Then

z .
(6.15) d° 't awwmm;
1, kal

rs
a UHHUFM E

Proof: Let f{z{|a = l,...,N} be an orthornomal set of

eigen-vectors of the matrix Awwxv and [A\%*} be the cor-

responding set of eigen-values, i.e.

(6.16) WHWNM = PQNM for a=1,...,N .
The orthogonality conditions

(6.17) NQNM = gaB

give rise to

(6.18) . 2928 = 83,

with %P denoting the Kronecker symbol.

s Bik

Remark 14: In the following the summation convention is

not to be applied with respect to Greek letters.

The matrix hmpwv admits the representation
T a.a.,0
(6.19) a = T 22z .
o
Then we get
ik r _ a. B 6,0 8.8
2™, by = T A" 2{7 2.2 Dy i

(6.20)
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with

aB . e B
(6.21) b* =2l 2 by -

Because of A% = q we get therefore

ik _rs 2 ~aB 2
aa ncwwvwm =q° ¢ %

(6.22)

With the help of (6.18) we come from the last inequality

to (6.15). #

. Then we get

] i =
Now we apply (6.15) with UHN Vi

3 P B 2 - ik_rs
(6.23) q°|v <=m = %% wHa e vy v ) ax .
Q

Besides of lower order terms the right hand side differs

from :b<=w by the weighted integral of the difference

ik _rs ik rs
ata vy Ve - (870, ) (atvg) =
ik_rs ik_rs
(6.24) = (a a <w<xmvHu = (o™ m <H<~.muTh -
ik_rs ik _rs
- (ataT ), ViV (a™"a" ) ViV -

This leads to an inequality of the structure
2,.2 .2 2
< ||A +
& llv vl =< lIavilg
2

(6.25)  + eIV, I9vligyy + Novilg,y + IVl } +

-8 ik _rs
+ % u ‘a a <Mﬁ<xmbﬁ|<dmﬁww ds .
=19}



