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0. Introduction

In [ 9] a semi-discrete finite element method for the
one-phase Stefan problem in one space dimension was pro-
posed and analized. In [10,11] the error analysis was fur-
ther extended to the case of irregular initial data such
that the 'oxygen diffusion problem' - see Problem T in

MAGENES [ 8 71 - is covered.

Af'ter summarizing these results in Section 1 we discuss
in Section 2 some refinements and further generalizations,
especially Problem ITT in MAGENES [ 8 ] fits into this

framework.

Primarily the method was developed in order to solve
numerically parabolic free boundary problems. On the other
hand it can be used for the proof of existence and unique-
ness. This is shown in Section 3. We remark that the re-

sults are known in principle. The main feature of this
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approach is the elementary way of getting the a priori es-
timates needed.

There is an extensive literature on free boundary prob-
lems both with respect to theoretical and numerical aspects.
We have tried to give a representative list of papers con-

cerning the parabolic case in the Bibliography B .

1. The Finite Element Method

The Stefan problem in its simplest form is as follows:
A pair of functions {U = Uly,7), s = s(r)} 1is sought such

that U solves the heat equation

{1.1) U -U,_ =0

in the domain

(1.2) ouTa.i_avo;onqnm?&.

The initial data are given: U(y,0) = f(y) . At the fixed

boundary ¥y = O the flux is zero: U _(0,7) = 0 . Along the

¥
free boundary y = s{r1) the temperature is zero:

Ufs(t},r) = O . The 'moving' of it is governed by

(1.3) s_+U/s(r),m =0,  s(0=1 .

Bv introducing x = mle as new space variable the problem
is transformed to one with a fixed boundary. It is usefull

to introduce a new time-variable <t by means of
T

0.8 v= ]P0 ar .
0

Of course, if s 1is known as a function of t then 7 is
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defined by
(. 5) & - P), r(0 =0 .

The funetion u = u(x,t) = U(y,r) solves

Problem P Find u such that

ut

I

(1.6 Ny.—a.s chﬁu‘nvzx in Q

B *Ax.cu,o <x <1 A avow

CL 7 zxﬁo.au =0

fo t 0 ’
(1.8)  u(1,t) ¥ = g

]
o

i

fix' for 0 <x <1 5

(1.9  u(x,0}

In our case - vanishing flux at x = 0 - the free boundary
is not coupled with Problem mz . Once u 1s known then s

is determined by

=-u_f{1,t)s . s{0) =1 :

(4:40)
ghlsE)

sfa

Because of (1.8) u can be computed if v =u, is known,

which for t fixed has to be in the space
(1.513) Hy = *z_z € H,(0,1) A w(0) = ow .

Multiplication of (1.6) by w_ with w € mH and integra-

b d
tion with respect to x 1leads to a 'weak formulation' of

Problem mz in terms of v :

Problem P, : Find v with v(.,t) € mp such that

(1.12)  (v,w) + {(v',w") = v(1)(xv,w")

for w € mp and t = 0
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with the initial data

{1.13) vi0) = g o= .

.

Here and in the following v' and v denote differentia-
tion with respect to x and t , sometimes we will also
write Vv = 3V . The dependence on t 1s mostly suppressed,
v(1) means v(1,.) . The Ly-product is denoted by (.,.)

and the norm by |.|| .

Having this formulation in mind a finite element method

is obvious:

Problem m¢:“ Let §, cH,

vy Wwith quﬁ..dv € S, such that

be an &pproximation space. Find

(1.18) (v, %) + (V] XM= vy (1) (xvy, X')
for X €8, and t >0

with the initial data

(1.15) v, _(.,0) = PE -

For simplicity we will conslder only the case of Py being

the ﬁmavﬂoumoﬂOH onto mv ®

Once i is known approximations on u resp. S, 7

are given by

L —
(1.16) uy o= vy, czAuu =0
respective
(1.17) Sp = -V, S, m:nod =1 3

(1.18) A , 4on, =0 .

It was proved in [ 9] - see also Section 4 - that

Problem md admits locally in time a unique solution, i.e.
h

there 1s & T > 0 depending only on |lg|| and especially

not on the cholce of 8§ such that there exists a unique

h
solution for 0 <t < T .

With the help of (1.12) and (1.14) we get the followirg
relation for the error e = ey = u-u,
(1.19)  (&,X) + (e',x") - v(1)(xe,X') - e(1)(xv,X') =

= -e(l)(xe,X') for X € Sy and t >0 .

With v Dbeing the solution of Problem m< and fixed the

bilinear form
(1.20) afle,X) := (e',X') - v(1)(xe,X") - e(1)(xv,x")

- o
is bounded in H and admits a Garding-type inequality.

—

Therefore standard arguments in the error analysis are
applicable. In the case of a 'regular' solution optimal
order of convergence is valid - see [ 97. If for instance
only g € L, 1is assumed then even [lv'|| and hence |v|
is not necessarily bounded for t - 0 . This case is dis-
cussed in ﬁuou. The oxygen-diffusion-problem leads for the

standard initial data

~

(1.21) f(x) = 20-x)?

to the initial data of v
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(1.22) g = -8'(x)

with § .dmusm the Dirac funetion - the time-derivative

U = mw of the former solution solves the Stefan problem.
This special situation is discussed in HHHH. Of course in
this case the singularity at x = t = 0 1is known. In praec-
tice one would take into account this fact and modify the
data. It is of interest that even linear splines used with
the initial data defined by (1.15) lead to an 5m conver-

gence.

2. Refinements and (Generalizations

mhu The original unknown u 1s approximated by - see

(1.16)

1
(2.1) u n-._.q ax .
X

1
Now let m: = ms

be the space of oo|mku:mm of degree r,
i.e. the elements of m: are continuous functions which
are plecewise polynomials of degree less than r . Then Yy
2.1+l

Y . An bmrmm«pamnm
of u-u, is equivalent to an estimate of e 1in the norm

belongs to the corresponding space S

of m|H . It can be shown that for r > 3 the error
=::c5= is bounded up to a constant by the error |e|| times
an extra factor h . The proof follows the lines of either

THOMEE [12] or ARNOLD-DOUGLAS [ 1 ].

ii.) In applying the finite element method to the oxy-

gen diffusion problem the function U in our context is

~

the time derivative wa: of the solution of the original
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problem which solves

(2.2) ca - CQ% = -1 .

~

In this way an approximation U, on i may be defined

by

mmA~+CUu in 0Oe«ex <l

(=2
=
[

(2.3)

m:_xau m::vuo .

Now in the same way using the mentioned super-convergence
results respective negative norm estimates an additional

factor ¢ sm is won for the error of mrmr . Because of

duality then r 2z 5 1s needed, 1l.e. at least guartic

splines are necessary.

iii.) The free boundary is approximated by msnp.pﬂv.

The error of s-8y is of the same order &S <ﬂuv|<3 o
Since x = 1 1s always a knot a super-convergence order

wmﬁdawg

holds. For this we refer to the already mentioned
papers and to DOUGLAS ﬂ MQ » DOUGLAS-DUPONT m UQ » DOUGLAS-

DUPONT-WHEELER [4,6] , and WHEELER [13].

iv.) If the flux at ¥y = 0 1s not identical zero then

(1.7) has to be replaced by the condition
(2.4) u (0) = #(r(t)) s

with 3(r) given. The variational formulation (1.12) is
still valid but the condition 'v ¢ mp_ has to be re-

placed by 'v-(1-x) s(r(t)s € rm . In this way (1.12) is
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coupled with the two ordinary differential equations (1.5),

(1.10) with u replaced by v . The corresponding error

x
analysis follows the same lines with qualitatively the same

bounds.

th Sometimes instead of the flux the temperature U

is prescribed. For simplicity let us assume
Am.ww CnOuﬁu = -k ’

for time dependent data modifications similar to iv.) are
necessary. In this case, of course, we cannot work wilth

Problem P, . Multiplication of (1.6) by w" with
. Q
(2.6) w €f, =R nH, = {z]z € Hy(0,1) A 2(0) = 2(1) = 0}
glves after integration the counterpart of (1.12)
(2.7) (@',w') + (u',w") = u'(1)(xu',w") .

The corresponding finite element method was analyzed for
linear problems by DOUGLAS-DUPONT-WHEELER [ mu. Since now
second derivatlives enter at least cuble splines have to he
used in order to get optimal error estimates in the Hmu

resp. b8|50d3.

vi.) The condition at the free boundary in case of the

mentioned Problem IIT in MAGENES [ 8] is
(2.8) U(s(r),r) = s(r)
or equivalently

(2.9) u_=1U
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This leads to the condition for u

(2.10) u, = -su, for x=1, t >0 '

For the moment let us assume zero flux at y = 0 . Similar

to Problem mq we come now to the weak formulation for

Problem P Find v with v(.,t) mF and s such that

'
v

v(1) (xv,w')

for w ¢ mH and t >0 ,

(2.11)  (v,w) + (v',w') + s v(1) w(1)

(2.12) $ = -vs for t >0

with the initial data

AMoHMu d.ﬁo‘Ov =g
(2.14) s(0) =1 .
With the help of v,s then u 1s defined by
(2.15) u=s - % v dx .
The modifications described in iv.) take place in case

v(0,t) # 0 . The analysis of wb is even simpler than of

P, because of the additional term in (2.11).

3. A Priori Estimates

Tn this section we turn over to the 'application' of
the finite element method in order to derive existence and

regularity results for the Stefan problem. The main tool is
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Theorem: Consider Problem By with the assumed regularity
h
g € L,(0,1) of the initial data. Further let S, c H, be

finite dimensional approximation space. There is a

o

T » 0 depending only on |lg|] such that m<: has a unique
solution for t = T . The semi-discrete Galerkin-approxima-

tion v, is in C%((0,T), FSL: and a priori bounds of

h
the type

t
2v)4 v 2 2. V1 )2 2
sup 1tV[a v I + |a“V|IaXv!||“de}t = v
O<tsT vl % L w 2v 7
(3.1}
t
2yl 2 2+l vl 2 2
sup {e2V* a4 [o™V* Yty I%ac) < v
o<t<T t'h % t h 2+l

are valid. The y's are independent of S, and

I

(3.2} Y, waﬁ<m<..<m¢+uu

is bounded by

N(.T__:m

A

(3.3) Y

v

with X depending only on |g| .

The proof of the theorem which was announced in [10] is
given in Section 4 . Here we will discuss some modifica-

tions and consequences

a.) If g has a higher regularity and parallel to
this fulfills the corresponding compatibllity conditions a
priori estimates of the above type but with lower powers of

t are valid.

b.) Because of
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x x
(3.4) =z(x) = H z'de, 2 (x) = ma zz'de
0 0

for any 2 € mH the estimates

(3.5) lzll = fjz*1
and

1/2 1/2
(3.6) |zl = sup 20| = V2 =022
O=xs1
hold true. We will make use of this extensively in Sec-

tion 4. Because of (3.1) we get especially
- -1/4
(3.7) v (o) svEy, /" .

Since the approximation ms on the free boundary 1s de-
fined by (1.17) a uniform H3lder-continuity of ms with

an exponent up to 3/l is the consequence.

¢.) 1In Section 2, vi.) we proposed a finite element

method for Problem ITI in MAGENES mmu. By quite the same
arguments existence and regularity properties of the solu-

tion of wm are derived. Especlally also in this case the

free boundary i1s c® .

|m = 1,2,...] be a nested set

d.) Now let mmz = mwa

of approximation spaces dense in mw s 1.B. ms c m3+H and

(3.8) 1im sup{inf =w.|w_=w =0
- ﬂmmrd
for z g ma . Because of the a priori estimates there is

at least a subsequence 4:_ € ms. converging to an ele-
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ment v & C((0,T), :Hﬁoupuu being a solution of Problem
m¢ and admitting the same bounds. The arguments are stan-
dard, see LIONS [7], pp 9-14.

Concerning c®-results of the one-phase, one dimensional
Stefan problem we refer especially to CAFFARELLI-RIVIERE
(1976), CANNON-HILL (1968), FRIEDMAN (1976a), SCHAFFER
(1976) - see also KINDERLEHRER (1978b), and KINDERLEHRER-
NIERENBERG (1978 a,b) for the more-dimensional case.

4. Proof of the Theorem

In the first two steps explicit bounds for Yor Y, &re
derived. It 1s of importance that only then a restriction
on T = T(|lgl|]) 1s necessary. In Step 3 a bound for \o

in terms of ﬂt with y < v -1 1is given and finally in
Step 4 Yp,41 1S bounded by Yo, 2nd Fyg The method is

elementary in the sense Lhal only norm estimates, Schwarz'
and Young's inequality and partial integration are needed.

Of course at the end the formulae are lengthy.

In the following m: and hence vy is fixed. Since

md leads to a system of ordinary differential equation
h

with a quadratic right hand side v exists in some neigh-

h
borhood of t = 0 . Throughout we will use the abbrevia-

tions

(4.1) z

]
<

and

t
(4.2) J ¥z )2 = [ Mz (o)l aa .
0
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We note

(4.3) lz,_oll = I ell = llsll

For the sake of clarity numerical constants are denoted by
CysCosees » If there is & dependency on the (fixed) quanti-

ty |lgll we will write Kyskpsenn o

1

IEMMA 1: There is a T = auA=m=u such that for t < T
2 2 2
(4.1) Izl + [lz'1% < 2liel® .

Proof: The choice ¥ =z in (1.14) gives

(4.5) 2 lz? + 12112 s |z|lzllz ] .
By (3.6) and Young's inequality we get

Lzl lzlllz' I} < V2 llzl/2)2 12

(4.6)
2 6
= 3lz'1° + Ze,llzll
and in this way by integrating (4.5) and using (4.3)

(8.7) Iz + [hz'1® = Jel® + o, [Uz1® .

The solution 3 of the integral equation
5.8 a= el 6, [#7

i.e. the function

(5.9) A= () = gl (1-2e, Il *e)"1/2

is a bound of the left hand gide of (4.7). The choice
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(4.10) 1, = 3/(8e Ial™)
leads to (4.4).

LEMMA 2: There is a T = T(|gl) = T, such that for

t=T
(h.11) ellz' I + [ cllzl® = % = k(lel) -

Proof: Now we take X = z 1in (1.14) and get

. 1 .
(4.12) 1202 + Lo llz' 1P = 2(1) (xz,2") =: &) .

Since 2' enters the right hand side which is not covered

by terms on the left hand side we have to Ilntegrate by

parts:
A, = 22(1)z(1) - 2(1)(x2'+2,2)
a3 s oy B2 2y Ry 3
= Lo, 201 + 202l + cplizlllz' P .

Because of Lemma 1 we get from (4.12)

(naw) SEPea lz'1? s 5, 22(1) + 4 cyllslllz' I

and hence by multiplication with t and integration

255 P2+ Iz - 5[ Pon

ellz'I® + 3 [ elal 5

(4.15) 3
+ 4 oplell [ ezl .
We have to find bounds of the terms on the right hand side

separately. The first 1is bounded by - see Lemma 1
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% 22(1) = ognlzl?/2)2 12

2 16

(4.16) < Wa:n + cytllz

1 2
MMG:N-“_ + ~.n,_. -

The second term is already bounded via Lemma 1. Finally we

have
) | 2] s g [I2172)12 177 5 x,

because of Lemma 1. In this way we come to the integral

inequality
2 =2
(5.18) tflz' 1 + [ el3® sy + gy [ ellz' .
Similar to (4.7), (4.8) the solution 1) of the integral

equation

(4.19) A= kg o+ [ ¢-1/2 ,\3/2

el

is a bound for the left hand side of (4.18). The solution

is
; _ -2
(4,20) A o= xu:-w: _..mui 3
The choice

: 2
(4.21) T = 3Hsﬁg_.p\ﬁ:wux:uu

gives (4.11) with k = Uk "

Step 3: By differentiation of (1.14) y-times with respect

to t we get the defining relation for z,
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(4.22) ﬁw¢.xu + (20,%") = 2(¥) N:AHVANNcicnx_u .

Here and in the following L means
: v
(4.23) Eu)Y= EAs)
u=0

We will suppress the dependence on v since there will be
no confusion. We will also use ¥E' with the meaning

v-1
(4.24) 2y =z () .

H=1
In the same way ZI,L' will denote certain sums, the dif-

ferent sums entering the formulae will be Mwsum‘nw ete, .

The choice X = z,, in (4.22) gives

#.25) 3 llz P + Iz = B 2,0 (ke ,20) =t T,

The indices u =0 and u = v play a special role, It is
== 1 1 1

(4.26) I = NaAvaNut.uﬁu + NcﬁHVﬂHNo.N<V +Z .

With the help of Lemmata 1 and 2 we come to

12,1 5 ks Mz =l + kglz V21200772 + 1501 =
(4.27)
< 2P + e 2z P 4 ingl

The sum MH still depends on Nw but we can estimate

Iz 1= =z {z @) 12,0z, 0} =0 lzz
(4.28)

< Hz! 2+ (=) .

with (4.27) and (4.28) we get from (4,25)
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(5.29) o llz JI? + Nz} =262z )2 4 2(23)® .

By our induction hypothesis we have

1 |¢|H\#
(4.30) L, st Py
with
B ') IRV )

(4.31) Py = IR Y, Yy, -
Multiplication of (4.29) with nm< and integration leads
to

2v 2 21112 2y=-1 2

Yz )2 + [ V2P s (2wkg) [ 2V Iz 1P+

2 -1/2

(4.32) + 20}, K

2 2 1/
s Amc+xmu Yoy-1 * P, T

Since the first term 1s covered by the second we have

LEMMA 3: Let y for u=wv -1 be known. Then

h —

v-1 -
(4.33) Yo, = n' 2 (@) Yy Yo

with ' depending only on |gll .

Step 4: Now we take X = w< % Bsm in (4,22) mwduzm.
(1.38)  flz g 12 + Falzll® = 2Dz, (1) (xz,_,20) =+ By -

Similar to Steps 2 and 3 we have to integrate by parts and
have to conslder the indices gy =0 and u = v 8Separate-

ly. It is
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) + z (1)(xz ,2')

1 (1Y il }
Mu * No,yuan¢.N¢ v o’y

N

Mw + 2z (1) N¢auq wﬁﬁpu - Noapuﬁxnw+n¢.u¢u -

(4.35)

1
- Ndﬁpumxuo+uo.uﬁv

= mw + Ay 4+ pu + Ay .

Firstly we will analyze the last three terms. In estimat-

ing

m . m
(4.36) A, = wﬁnﬂoﬂgdw<ﬂ~4v- NoA_um<ﬁHuu

we have to consider the cases vy =1 and v =2 separate-
ly. In the latter case we have already bounded v, and
<w . This leads to

(4.37) 2, (D1 s 5, 2% .

Then we get

m<+~ m¢+H m
% t >w <t Nompumaﬁpv +

2 2
(4,38) + (2y+1) .ﬁ 2V (1)25(1) +

7 Datriih oy

and because of Lemmata 1 and 2

[ 62, = 1 d?&}f_:_ﬁ__ +
(4.39)

Koy | 2V Mz iz

With & 2 0 we get
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2yl 2w+l 2 1 2 22
(4.40) % eV, = 8 V12T + kg (1) (vp YY) -

In the excluded case y = 1 the second term in (4.36) is

NWAHV and we get by applylng Young's inequality
2 2
[ 21z 1P = 2v7 [ 2z, 177202507

(4.41) s ([ 22y + [ Oz

2

< amﬁ + e<mu i

Therefore (4.40) also is valid for v = 1 (possibly with

k changed).

11
Next we have with & * O arbitrary
- -1/4 .
Ay = 2y, oM zlE
(4.42) y :
LY -1 -1/2p,1
s 8llz 17 + 87k, T2
This gilves
2u+1 241 2
[+ Jm;d [EN|
- 2w1/2 2
(4.43) T R P
2v+l -1
8 [ AVz 0% + 8 wu{? :

The estimation of ra follows the same lines and leads to

a bound of the above type. Thus we have

_. g2 v (A + u.:;u < m?ﬁnmi‘u__uh‘_:m+ ._.ﬁmi.m__nii_mw+
(4. 44)
+ k(187D (B0 7))

It remains to analyze Mw . By partial integration we
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get

.

3 u ' (Yz,(1) 2, (1) 2 (1) -

(4.45) - B WDz (D) k3l + 2 5

=: o + MW "

To derive a bound for MW is short

s ol 2 Q) eyl
(4.46) k ' -
S 8llz P + 67 o722 2

leading to
(hou7). [ 62V oSS | nm<+H=m¢=m+ 081 71/2 uw 4
The estimation of Mﬁ is more lengthy. We may write
I = waﬁucAHV.M_Auv z,(1) n<-:ﬁpuw -
(4.48) - mn¢ﬁuq M_Amu thHu u¢-tﬂuu
= o {z (1) g+ 2z (1) T .
We have
[ sl ) g} = 2 55 -

2
- (2v+1) .ﬁn Vi (1) 5

(4.49)

Let us consider the second term firstly. With the esti-~

mates already won - or assumed - for iy < y-1 we get

NITSCHE

12V (1) 5= ¥3 + 12 f1z 1122011 /2
(4.50)
< ....\Mn._nma.lu.”_ﬂd_"MuH\__:.ﬂmt:uh..__wuH\kmﬂlH\.——bCu

Now we apply the inequality
P S —_

=
o
.

(4.51) ” a1/ pt/4 c s % a + W b +

The additional factor 2wl 1s taken to the first term.

This gives

(n.52)  (2w1)|[-62V2 (1) gg|= o {v'F2 + vB, + T3P} .

In the analogue way we find

(4.53) nmipu&: I <

2+l 2 iy [ 2 1/2 2
s 6 VWP« cg1es™H{V3, + TV 205} .

Finally we turn over to Mm . Because of nn = mtvw we
get

1 Vo2 v
(4.5%) B = vz (1) 2,(1) + B (r,(Mag (1)

Once more we have to differentiate between v = 1 and
v >1 . In the latter case we have already a bound for

NHAwu leading to

212, (15| = kygv ¢ Mz fllz ) +
(k.55) "
J /2, v g

+ o@:m "

with

, v-2 — _
(1:56) By = T (D Ty

It
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what can be further estimated by - see (4.51)

2v+1 '
2t _Ndﬁpd Mw_ <
(4.57) -
2 2 2 2y-1 2 -1/2
< oyo{2VIEP + VPPV I 4 2T /R E)

giving

N 5 2 2 _1/2 a2
Y 3 !
(4.58 |2 % t Ncﬂu Mﬂ_mmmoHoq<m¢+< <<1w+a udu

The case v =1 gives
(4.59) =0
T

and nothing has to be proved.

Now we are ready to put things together. With the help
of (4.44), (k.47), (L4.52), (4.53), and (4.58) we derive
from (4.34)

2utly g2 2v+1 2
SR e [ P I

=38PV MR+ [ 2z 1P)
(4.60)
+ (2w | am¢__no_ﬁm +

-1 2 L 2 2. ~2
+ W.—mﬂw+m ,_A.{m(—.._.(u 4(.!..—.+D(.+“(.u .

Wwith & < 1/6 we get

LEMMA 4: Let ¥ for up = v-1 and be known. Then

Yoy

T

- " m — b
Youer = H *qd L TR TR B ucw

with «" depending only on |lg]l .
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By means of Lemmata 3 and 4 we have the recurrence re-

lation
_ - v-1 W v=2 w= = 2 -
(.61 v, = x5 E (DFy¥yut B DTyt v Yooi)

with % depending only on |g|| . The term with p = v-2
in the second sum is covered by the last term. In this way

we get
£y v-1 V=3 [ g
(4.62) Y, s xﬁqa oot Toee v Yo-1}

with a new x = u([lg]l) .

Without loss of generality we can assume vy, S x ,

otherwise x has to be increased. Our aim is to bound ﬂt
by

ﬁ#.muu ﬁt = At_vm xﬁbﬁumAtlHu

with some 4 fixed depending only on |g|| . Then the re-
maining inequality (3.3) of the theorem is proven.

of course for any N = N(|lg|]) fixed there is a #

such that
(4.64) Yy sT for u=1,2,...,8N .

The integer N = N(|lg]l) will be specified later on, see
(4L.7%), Now we apply complete induction: Let v >N . We
assume ﬂ: = ﬂt for u < v-1 already proven. Then (4.62)

glves
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v=3

(4.65) - + T (D)2 (v 1)2gB2 2y
1
+ ﬁc_um ¢m¢|a xm¢au¥ .
With the abbreviations
v-1
=N T (MW)wn?
1
(4.66)
-3

2

5

]

za Vo2 2
(vt D) DT ((v-p) 1)
1
we can rewrite (4.65) in the form

(4.67) v, S *A¢_um xﬂ¢xgmA¢|Hu¥*¢-mwu ! ¢smxupw

We need bounds of the sums Mm 5 Hm . Since only v = o

is of interest we may assume v = 9 , Then

(B = (W) =2 ¢ Woofor gy o=1,2,3,

(4.68)
Awq 2 ¢ <: for 4 =y =< 4
It is
1 VL et
(4.69) T =\VvZ (Y
1
and therefore
v/2
! < 2\ ﬁ<nu +¢9 T <|mw
(4.70) .
<e <-H\m .

NITSCHE 25

Similarily we have

-5
2 - ¢m Ewi) L Gy (et )Y ((veuad 1)

(4.71) ,
ﬁ'
<} z cm@-p g

By means of (4,68) we can estimate

v-1
£ < opff ¢ F W
(4.72)

-1

= ouu x .

In this way we get from (4.67)

(h.73) §y, = ﬁﬁﬁ_wmxﬁaxumﬁ<uHUWAap~¢nm + o._uxm¢..H + ¢nman;

Now the cholce of 4§ and N 1s obvious., We take

ﬁu + 2 nHu xmu

ﬁmﬁoua + ::wap\m

[l

(4.74)

$ =8

what depends only on |lg]| . Then the second brackets in

(4,73) are less than 1 for vy > N , i.e. we have ¥, < ﬁﬁ

by induction.

Besides ﬁa.qamu # has to be chosen such that YTy

for u =N . But also this is only dependent on |g| .

BIBLIOGRAPHY A:

[ 1] ARNOLD, D.N.; DOUGLAS, J., Jr.: Superconvergence of
the Galerkin approximation of a quasilinear parabolic
equation in a single space variable. (To appear).



26

[ 2]

[10]

[11]

217

(13

NTTSCHE

DOUGLAS, J., Jr.: A superconvergence result for the
approximate solution of the heat equation by & collo-
cation method. The Mathematical Foundations of the
Finite Element Method with Applications to Partial
Differential Equations, A.K. Aziz ed., Academic Press,
New York, 475-490 (1972).

DOUGLAS, J., Jr.; DUPONT, T.: Some superconvergence
results for Galerkin methods for the approximate
solution of two-point boundary problems, Proc. of
Conf. on Numerical Analysis, J.J.H. Miller ed.,
fAcademic Press, New York, 89-92 (1974).

pouGLas, J., Jr.; DUPONT, T.:; WHEELER, M.: Some
superconvergence results for an Hl-Galerkin proce-
dure for the heat equation. Lecture Notes in Comp.
Sei. 10, 491-504 (1974).

DOUGLAS, J., Jr.; DUPONT, T.; WHEELER, M.: zpnomwmwn
kin methods for the Laplace and heat equations. Math.
Aspects of Finite Elements in Partial Differential
Equations, C. de Boor ed., Academic Press, New York,
383-416 (1974).

DOUGLAS, J., Jr.; DUPONT, T.; WHEELER, M.: A quasi-
projection analysis of Galerkin methods for parabolic
and MMvmwdowno equations. Math. Comp. 32, 345-362
(1978). =

LIONS, J.L.: Guelque méthodes de résolution des
problémes aux limites non linéaires. Dunod, Paris

(1969).

MAGENES, E.: Topies in parabolic equations: Some
typiecal free boundary problems. Boundary value prob-
lems for linear partial differential equations, Proc.
of the NATO Advanced Study Institute, Liége, Belgium,
Sept. 1976, H.G. Garnier ed., D. Reidel Publ. Comp.,
Dortrecht, 239-312 (1976).

NITSCHE, J.A.: Finite element approximation to the
one-dimensional Stefan-problem. Proc. on Recent Ad-
vances in Numerical Analysis, C. de Boor and G. Golub
eds., Academic Press, New York, 119-142 (1978).

NITSCHE, J.A.: Approximation des eindimensionalen
Stefan-Problems durch finite Elemente. International
Congress of Mathematicians, Helsinki. (To appear).

NITSCHE, J.A.: Finite element approximations for
free boundary problems. TICOM Second International
Conference on Computational Methods in Nonlinear
Mechanies , Austin. (To appear).

THOMEE, V.: Negative norm estimates and superconver-
gence in Galerkin methods for parabolic problems.
fTo appear).

WHEELER, M.: A c®-collocation finite element method
for two-point boundary value problems and one space
dimensional parabolic problems. SIAM J. Numer. Anal.
14, 71-80 (1977).

NITSCHE 27

BIBLIOGRAPHY B:

Agrawal, H.C. (1975): Biot's variational principle for
moving problems. Moving boundary problems in heat
flow and diffusion. J.R. Ockendon and W.R. Hodgkins
eds., Clarendon Press, Oxford, 242-250.

Amirat, Y. and V. Atik (1978): Approximation numérique
d'un probléme & frontiére libre. anmu. summary) .
C.R. Acad. Sci. Paris ser. A-B 286, 203-206,

Atthey, D.R. (1974): A finite difference scheme for melting
problem. J. Inst. Math. Appl. 13, 353-366.

Atthey, D.R. (1975): A finite difference scheme for melting
problems based on the method of weak solutions. Moving
boundary problems in heat flow and diffusion. J.R.
Ockendon and W.R. Hodgkins eds., Clarendon Press,
oxford, 182-191.

Bachelis, R.D., V.G. Melamed and D.B. Shlyaiffer (1969):
The solution of the problem of Stefan type by the
straight line method. USSR Comp. Math. and math. Phys.
9, 3 113-126.

Bailocehi, C. and G.A. Pozzi (1976): An evolution varia-
tional inequality related to a diffusion-absorption
problem. Appl. Math. Optim. 2, 304-314,

Baloecchi, C. and G.A. Pozzi (1977): Error estimates and
free-boundary convergence for a finite difference
discretization of a parabolic variational inequalicty.
R.A.I.R.0. Numer. Anal. 11, 315-340.

Barenblatt, G.T. and A, Yu. Ishlinskii (1962): On the im-
pact of a viscoplastic bar on a rigid obstacle. J.
Appl. Math. Mech. 26, T4O-T48.

Bazahi, B.V. and V. Ju., Selepov (1978): The asymptotic be-
havior of the solution of a Stefan problem. Dokl.
Akad. WNauk. Ukrain SSR Ser. A Homonuomu. 1150.

Bensoussan, A. and A. Friedman (1977): Nonzero-sum stocha-
stie differential games with stopping times and free
boundary problems. Trans. AMS 231, 275-327.

Berger, E. (1976): The truncation method for the sclution
of a class of variational Inequalities., R.A.I.R.O.
Numer. Anal. 10, 29-42.

Berger, A.E., M. Ciment and J. Rogers (1975): Numerical
solution of a diffusion consumption problem with a
free boundary. SIAM J. Numer. Anal. 12, 646-672.



28 NITSCHE

Boley, B.A. (1961): A method of heat conduction analysis of
melting and solidification problems. J. Math. Phys. mmu

300-313.

Boley, B.A. (1963): Upper and lower bounds for the solution
of a melting problem. Quart. J. Appl. Math. 21, 1-11.

Boley, B.A. (1964a): Upper and lower bounds in problems of
melting or solidifying slabs. Quart. J. Mech. Appl.
Math. 17, 253-269.

Boley, B.A. (1964b): Estimate of errors in approximate
temperature and thermal stress calculation. Proceed-
ings XI. Intern. Congress of Appl. Mech., Springer-
Verlag, Berlin, 586-596.

Boley, B.A. (1968): A general starting solution for melting
or solidifying slabs. Internat. J. Engrg. 6, 89-111,

Boley, B.A. (1970): Uniqueness in a melting slab with
space- and time-dependent heating. Quart. J. Appl.
Math, 27, 481-487.

Boley, B.A. (1975): The embedding technigue in melting and
solidification problems. Moving boundary problems in
heat flow and diffusion. J.R. Ockendon and W.R. Hodg-
kins eds., Clarendon Press, Oxford, 150-172.

Boley, B.A. and Ting-shu Wu (1966): Bounds in melting prob-
lems with arbitrary rates of liguid removal. SIAM J.
Appl. Math. 14, 306-323.

Boley, B.A. and H.P. Yagoda (1969): The starting solution
for two-dimensional heat conduction problems with
change of phase. Quart. J. Appl. Math. 27, 223-246.

Boley, B.A. and H.P. Yagoda (1971): The three-dimensional
starting solution for a melting slab. Proec. Roy. Soc.
London A, 89-110.

Bonnerot, R. and P. Jamet (1974): A second order finite
element method for the one-dimensional Stefan problem.

Tnternat. J. Numer. Methods Engrg. 8, 811-820.

Bonnerot, R. and P. Jamet (1977}: Numerical computation of
the free boundary for the two-dimensional Stefan prob-
lem by space time finite elements. J. Comp. Phys. 25,
163-181.

Bonnerot, R, and P. Jamet (1979): A third order accurate
discontinuous finite element method for the one-
Qwamsmponmw Stefan problem. J. Comp. Phys. 32, 145-
167. —

Borgioli, 6. and E, Benedetto (1978': Stefan problems with
nonlinear boundary conditions: The polygonal method.

ZAMM 58, 539-546.

NITSCHE 29

Budak, B.M., N.A. Goldman and A.B. Uspenskii (1966): Dif-
ference schemes with reetification of the fronts for

mow<unm a:Hduwuouamnmnwsvdodwmam.mo<.3wﬂ7.vowh.q.
4sh_ys8, -

Budak, B.M. and M.Z. Moskal (1969): On the classical solu-
wwwa of the Stefan problem. Sov. Math. Dokl. 10, 219-

Budak, B.M. and M.Z. Moskal (1969): Classical solutions of
the multi-dimensional multifront 8tefan problem. Sov.
Math. Dokl. 10, 1043-1046.

Budak, B.M., E.N. Sobol'eva and A.B. Uspenskii (1965):
Difference methods for solving certain boundary value
WMOWWmam. USSR Comput. Math. and math. Phys. 5, (5),

Budak, B.M. and A.B. Uspenskii (1969): A difference method
with front straightening for solving Stefan-type
problems. USSR Comp.Math. a.math. Phys.9(6), 83-103.

caffarelli, L.A. (1976): The regularity of elliptic and

parabolic free boundaries. Bull. Amer. Math. Soc. 82,
616-618. o

Caffarelli, L.A. (1977): The regularity of free boundaries
in higher dimensions. Acta Math. 139, 155-184,

caffarelli, L.A. (1978): The Stefan problem in n-dimen-
sions. Proc. on Recent Methods in Nonlinear-Analysis,
Rom. ¥. de Giorgi, E. Magenes, U. Mosco eds. Pitagora
‘Editrice, Bologna, 13-23.

Caffarelli, L.A. (1978): Some aspects of the one-phase
Stefan problem. Indiana Univ. Math. J. 27, 73-77.

Caffarelli, L.A. (1978): The one-phase Stefan problem and
the porous medium diffusion equation: Continuity of
the solution in n-space dimensions. Proc. Nat. Acad.
Seci. U.S.A. 75, momm.

Caffarelli, L.A. and A, Friedman (1979): Continuity of the
temperature in the Stefan problem. Indiana Univ. Math.
L.. Mmu WU-\NQ.

Caffarelli, L.A. and N.M., Riviere (1976): Smoothness and
analyticity of free boundaries in variational ine-
qualities. Ann. Scuola norm. sup. Pisa 3 (IV), 289-
310. -



30 NITSCHE

cannon, J.R. (1978): Multiphase parabolic free boundary
value problems. Moving boundary problems. Proc. Symp.
and Workshop, Gatlinburg, Tenn., 1977, 3-24, Academic
Press, New York, 3-24,.

Cannon, J.R. and E. Benedetto (1978): On the existence of
solutions of boundary value problems in fast chemical
reactions. Boll. Un. Mat. Ital, B, 15, 835-843.

Cannon, J.R. and J. Douglas (19678): The Cauchy problem for
the heat equation, SIAM J. Numer. Anal. 4, 317-336.

cannon, J.R. and J. Douglas (1967b): The stability of the
boundary in a Stefan problem. Ann. Scuola norm. sup.
Pisa 21 (197}, 83-91.

cannon, J.R., J. Douglas and C.D. Hill (1967): A multi
boundary Stefan problem and the disappearance of
phases. J. Math. Mech. 17, 21-33.

Cannon, J.R. and A. Fasano (1977): A nonlinear parabolic
free boundary value problem. Ann. Mat. P. Appl. 112,
119-149.

cannon, J.R., D.B. Henry and D.B. Kotlow (1974): Continu-
oug differentiability of the free boundary for weak
solutions of the Stefan problem. Bull. AMS 80, 45-48.

cannon, J.R., D.B. Henry and D.B. Kotlow (1975/1976): Clas-
sical solutions of the one-dimensional, two-phase
Stefan problem. Ann. Mat. P. Appl. (4) 107, 311-3h1,

cannon, .J.R. and C.D. Hill (1967a): Existence, uniqueness,
stability, and monotone dependence in a Stefan prob-
lem for the heat equation. J. Math. Mech. 17, 1-19.

Cannon, J.R. and C.D. Hill (1967b): Remarks on a Stefan
problem. .J. Math. Mech. 17, 433-441,

cannon, J.R. and C.D. Hill (1968): On the infinite differ-
entiability of the free boundary in a Stefan problem.
J. Math. Anal. Appl. 22, 385-397.

cannon, J.R. and C.D. Hill (1970): On the movement of a
chemical reaction interface., Indiana Univ. Math. J.20,
429-454, e

cannon, J.R., C.D. Hill and M. Primicerio (1970): The one-
phase Stefan problem for the heat equations with
boundary temperature specifications., Arch. Rat. Mech.
Anal. 39, 270-2T4.

cannon, J.R. and M, Primicerio (1971a): A two-phase Stefan
problem with temperature boundary conditions. Ann.
Mat. P. Appl. 88, 177-192.

NTTSCHE 31

Cannon, J.R. and M. Primicerio (1971b): A two-phase Stefan
problem with flux boundary conditions. Ann. Mat. P.
Appl. mm. 193-206.

Cannon, J.R. and M. Primicerio (1971ec): Remarks on the one-
phase Stefan problem for the heat equation with the
flux prescribed on the fixed boundary. J. Math. Anal.
Appl. 35, 361-373.

Cannon, J.R. and M. Primicerio (1973): A Stefan problem in
solving the appearance of a phase. STAM J. Math. Anal.
4, 141-148,

Chan, C.V. (1970): Continuous dependence on the data for a
Stefan problem. STAM J. Math. Anal. 1, 282-288.

Chan, C.Y. (1971): Uniqueness of a monotone boundary prob-
lem. SIAM J. Appl. Math. 20, 189-194.

Ciavaldini, u.m.\nwmﬂmvn Analyse Numérique d'un probléme
de Stefan a deux phases par une méthode d'élements
finis. SIAM J. Numer. Anal. 12, 464-487,

Ciment, M. and R.B. Guenther (19T74): Numerical solution of
a free boundary value problem for parabolic equations.
J. Appl. Analysis 4, 39-62,

Comini, G., 5. Del Guidice, R.W. Lewis and 0.C. Zienkiewlcz
(1974): Finite element solution of non-linear heat
conduction problems with speclal reference to phase
change. Internat. J. Numer. Methods Engrg. 8, 613-624.

Crank, J. (1957): Two methods for the numerical solution of
moving-boundary problems in diffusion and heat flow.
Quart. J. Mech. Appl. Math. 10, 220-231.

Crank, J. (1975): Finite-difference methods. Moving bound-
ary problems in heat flow and diffusion. J.R. Ockendon
and W.R. Hodgkins eds., Clarendon Press, Oxford, 192-
207.

Crank, J. (1975): A nostalgic look at the mechanieal solu-
WMoﬂ of Stefan problems. Bull. Inst. Math. Applies.11,
=-33. -

Crank, J. and R.S. Gupta (1972a): A moving boundary prob-
lem arising from the diffusion of oxygen in absorbing
tissue. J. Tnst. Math. Applies. 10, 19-33.

Crank, J. and R.S8. Gupta (1972b): A method for solving
moving boundary problems in heat flow using cubic
splines or polynomials. J. Inst. Math. Applics. 10,
206-304. -

Crank, J. and R.D. Phahle (1973): Melting ice by the iso-

nsmwﬁ migration method. Bull. Tnst. Math. Applics. 9,
12-14. =



32 NITSCHE

Crowley, A.B. and J.R., Ockendon (1977): A Stefan problem
with a non-monotone boundary. J. Inst. Math. Applics.
20, 269-281.

Damlamian, A. (1978): Une generalisation concernant la
probleme de Stefan. Proc. on Recent Methods in Non-
Linear Analysis, Rom, E. De Giorgi, E. Magenes,

U. Mosco eds., Pitamora Editrice,Bologna, 25-28.

Damlamian, A. (1979): Homogenization of the Stefan problem.
C.R. Acad. Sci. Paris Ser. A-B 289, 9-12.

Douglas, J. (1957): A uniqueness theorem for the solution
of a Stefan problem. Proc. AMS 8, 402-408.

Douglas, J. and T.M. Gallie (1955): On the numerical inte-
gration of a parabolic differential equation subject
to a moving boundary condition. Duke Math. J. 22,
557-5T1.

Duvaut, G. (1973): Résclution d'un probléme de Stefan. C.R.
Acad., Sci. Paris, 276, 1461-1463,

Duvaut, G. (1974): Résolution d'un probléme de Stefan. New
Variational Techniques in Math. Phys., C.I.M.E.,
Cremonese, B4-102.

Duvaut, G. {1975): The solution of a two-phase Stefan prob-
lem by a variational inequality. Moving boundary prob-
lems 1n heat flow and diffusion. J.R. Ockendon and
W.R. Hodgkins eds., Clarendon Press, Oxford, 173%-191.

Ehrlich, L.W. (1958): A numerical method of solving a heat
flow problem with moving boundary. J. Assoc. Comp.
Mach. 5, 161-176.

Elliott, C.M. (1978): Moving boundary problems and linear
complementarity. ISNM 39, 62-73,

Evans, G.W. (1951): A note on the existence of a solution
to a problem of Stefan. Quart. J. Appl. Math. 9,
185-193.

Evans, G.W., E. Isaacson and T. MacDonald (1950): Stefan-
like problems. Quart. J. Appl. Math. 8, 312-319.

Evans, L.C. (1977): A free boundary problem: The flow of
two immiscible flulds in a one-dimensional porous
medium, I.; Indiena Univ. Math. J. 26, 915-952.

Evans, L.C. (1978): A free boundary problem: The flow of
two immiscible fluids in a one-dimensional porous
medium IT. Indiana Univ. Math. J. 27, 93-111.

NITSCHE 33

Evans, L.C. and A, Friedman (1979): Regularity and asymp-
totic behavior of two immiscible fluids in a one-
dimensional porous medium. J. Differential Equations
31, 366-391.

Evans, N.T.S. and A.R. Gourlay (1977): The solution of a
two-dimensional time-dependent diffusion problem con-
cerned with oxygen metabolism in tissues. J. Inst.
Math. Applies. 19, 239-251.

Fasano, A. (1971): Un esempio di controllo ottimale in un
problema del tipo di Stefan. Boll. Un. Mat. Ttal. 4,
846-858. -

Fasano, A. (1975): Alcune osservazioni su una classe di
probleml a contorno libero per l'equazione del calore.
Matematiche (Catania) 29, 397-411.

Fasano, A. and M. Primicerio (1973): Convergence of Huber's
method for heat conduction problems with change of
phase. ZAMM 53, 3U41-348.

Fasano, A. and M. Primicerio (1973): La diffusione del
calore in uno strato di spessore variabile in presen-
za di scambi termici non-lineare con 1l'ambiente I.
Deduzione di limitazioni a priori sulla temperatura
e le sue derivate. Rend. Sem. Mat. Univ. Padova 50,

269-330.

Fasano, A. and M. Primicerio (1974): Dipendenza continua
della temperatura dail coefficienti termici in proble-
mi di conduzione non lineari., Boll. Un. Mat. Ttal. 9,
93-103.

Fasano, A. and M. Primicerio (1975): One-phase and two-
phase free boundary problems of general type for the
heat equation., Atti Accad. Naz. Linceil Rend. CI. Sci.
Fis. Mat. Natur (8) 57, 387-390.

Fasano, A. and M. Primicerio (1975/76): A stability theo-
rem for diffusion problems with sharply changing
temperature-dependent coefficients. Quart.J.Appl. Math
33, 131-141.

Fasano, A. and M. Primicerio (1977a): General free-bounda-
ry problems for the heat equation. J. Math. Anal.
and Appl. 57, 694-723.

Fasano, A. and M. Primicerio (1977b): General free-bounda-
ry problems for the heat equation IT. J. Math. Anal,
and Appl. 58, 202-231.

Fasano, A. and M., Primicerio (1977c): General free-bounda-
ry problems for the heat equations III. J. Math. Anal
and Appl, 59, 1-14.



