On the lowest eigenvalue of a pseudo-differential operator

(sharp Gårding inequalities/uncertainty principle/subelliptic estimates/commutators of vector fields)

C. FEFFERMAN* and D. H. PHONG†

*Department of Mathematics, Princeton University, Princeton, New Jersey 08544; and †Department of Mathematics, Columbia University, New York, New York 10027

Contributed by Charles Fefferman, September 17, 1979

ABSTRACT Positive lower bounds for pseudo-differential operators with nonnegative symbols are derived; the bounds in particular yield subelliptic estimates for operators arising as sums of squares of vector fields.

Let \(p(x,\xi) \) be a nonnegative symbol satisfying the estimates

\[|\partial_x^\alpha \partial_{\xi}^\beta p(x,\xi)| \leq C_{\alpha\beta} M^{-|\alpha|} \]

We shall outline an algorithm to determine the order of magnitude of the lowest eigenvalue of the corresponding pseudo-differential operator \(p(x,D) \). This is closely related to earlier work on conditions ensuring the estimate

\[\text{Re}(p(x,D)u,u) + C|u|^2 \geq 0 \quad u \in L^2(\mathbb{R}^n). \]

The sharpest known sufficient conditions for inequality 2 are the following:

(i) \(p \in S^2(\mathbb{R}^n \times \mathbb{R}^n), \quad p \geq 0 \) (see ref. 1)

(ii) \(p \in S^{6/5}(\mathbb{R}^n \times \mathbb{R}^n), \quad p + Tr^+p \geq 0 \), in which

\(Tr^+p \) is a nonnegative quantity defined in terms of the Hessian of \(p \) [see Hörmander (2) and also Melin (3)].

Our first main result on the eigenvalue problem, motivated by the uncertainty principle of quantum mechanics, is the following:

- Let \(Q_0 = \{ (x,\xi) \in \mathbb{R}^n \times \mathbb{R}^n ; |x|, |\xi| \leq 1 \}; \) say that a canonical transformation \(\Phi : (x,\xi) \rightarrow (y,\eta) \) mapping \(Q_0 \) into \(\mathbb{R}^n \times \mathbb{R}^n \) is a testing map if \(y - y_0 \) and \((\eta - \eta_0)/M \) are \(C^\alpha \) functions of \((x,\xi) \) with norms bounded by a fixed constant. Here \((y_0,\eta_0) \) denotes \(\Phi(0,0) \), and \(\alpha \) is a constant that depends on \(\epsilon \) below.

THEOREM 1. If \(p(x,\xi) \geq 0 \) satisfies inequality 1, and \(K \geq C p^2 \) is a constant such that

\[\|p^\alpha \Phi \|_{C(Q_0)} \geq K \] for any testing map \(\Phi \),

then

\[\text{Re}(p(x,D)u,u) \geq c \alpha |u|^2 \quad u \in L^2(\mathbb{R}^n). \]

From Theorem 1, one can easily read off the following special case of the theorem of Hörmander (4) on commutators of vector fields:

COROLLARY. Let \(X_1, \ldots, X_m \) be vector fields on \(\mathbb{R}^n \) whose Lie brackets up to order \(k \) generate the Lie algebra at each point. Then

\[\sum_{|\alpha| = 1}^m \|X_\alpha u\|^2 + C_\alpha u\|^2 \geq c |u|^2 - r+1/(k+1) > 0 \]

which \(u \in C^k \) is supported in the unit ball in \(\mathbb{R}^n \).

In fact, inequality 4 holds for \(c = 0 \), as was proved by Rothschild and Stein (5) (together with estimates in norms other than \(L^2 \)); we shall also derive that result from a refinement of Theorem 1 to be given below.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U. S. C. §1734 solely to indicate this fact.
(iii) $(\text{diam}_x Q_1)(\text{diam}_t Q_1) \leq K^{1/2}/A$.

Here A is a large constant, and Q_1^* is the dilate of Q_1 by a large constant factor. In view of the $S^m_{\Psi^m}$ calculus (see ref. 6), inequality 3 holds for $p(x, \xi)$ if and only if localized estimates hold for $p|Q_1$. Thus inequality 3 is evidently false if there is any Q_1 satisfying iii. Otherwise, because the localized estimate is obviously true for Q_1 satisfying i, the only delicate case is ii.

However, a suitable canonical transformation carries the symbol $p|Q_1$ to a symbol of the form 7, so that Theorem 2 reduces the problem to an eigenvalue computation in fewer variables.

The estimate 4 with $\varepsilon = 0$ can be obtained from our algorithm, which in fact shows that if $p = \sum p_l^2$ and

$$||p_1, p_1, \ldots, p_l, p_{l+1}, \ldots|| \geq K^{(l+1)/2}$$

for some l, then inequality 3 holds, the reason being essentially that the derived symbol of p arising from a cube Q_1 of type ii is again a sum of squares satisfying hypotheses analogous to inequality 9.

Theorem 2 in turn can be deduced from the following result on the spectral decomposition of pseudo-differential operators, which may be of intrinsic interest:

Theorem 3. Given $p(x, \xi) \geq 0$ and a constant K, let

$$p_K(u) = (\min[K, p^*(x, D)]u, u),$$

in which $p^*(x, D)$ is defined by the Weyl calculus as in Hörmander (2), and the minimum is taken in the sense of spectral theory. Then if p, q are nonnegative symbols satisfying inequality 1, we have

$$(p + q)_K(u) \leq C_0[p_K(u) + q_K(u) + M\|u\|^2].$$

The proofs of the results announced here will appear in a forthcoming article.

It would be interesting to know whether the lower bound for the least eigenvalue of $p(x, D)$ given by Theorem 1 is sharp.

This research was carried out while C.F. was supported by the National Science Foundation Alan T. Waterman Award and D.H.P. was partially supported by the National Science Foundation.