On the first variation of area and generalized mean

W. K. Allard

(C.I.M.E.)
Center Internazionale Matematico Estivo
Let X_n be the algebra of linear transformations of \mathbb{R}^n. Then for $\lambda \in X_n$, we have
\[
\lambda(x) = \sum_{i=1}^n a_i x_i
\]
where (a_1, \ldots, a_n) is a vector in \mathbb{R}^n. Thus, λ is a linear operator on \mathbb{R}^n.

Consider a linear transformation λ on \mathbb{R}^n. Let $A = (a_{ij})$ be the matrix representation of λ with respect to the standard basis. Then λ is given by
\[
\lambda(x) = Ax
\]
for all $x \in \mathbb{R}^n$.

The space of linear transformations on \mathbb{R}^n is isomorphic to the algebra of $n \times n$ matrices over \mathbb{R}. Thus, we can identify X_n with the algebra of $n \times n$ matrices over \mathbb{R} and study the properties of λ through the algebraic properties of A.

The determinant of A is a scalar function on X_n that measures the volume scaling factor of λ. The trace of A is the sum of the diagonal entries of A, which measures the sum of the eigenvalues of λ.
\[s_\tau(x)^2 y_\tau = 0 \] for \(\tau \) near 0.

Consider F_{τ} for small τ. Note that F_{τ} is a contraction on x^E for some $x \in X$. If F_{τ} has a fixed point, then $x^E = x^E$.

For $0 = 0 = 0$ at $0 < x < \infty$, let $x = (x^E)$.

Example 1. Suppose F_{τ} is smooth. We define the ζ-function.

Example 2. Suppose F_{τ} is smooth. We define the ζ-function.

Example 3. Suppose F_{τ} is smooth. We define the ζ-function.

Example 4. Suppose F_{τ} is smooth. We define the ζ-function.

Example 5. Suppose F_{τ} is smooth. We define the ζ-function.

Example 6. Suppose F_{τ} is smooth. We define the ζ-function.

Example 7. Suppose F_{τ} is smooth. We define the ζ-function.

Example 8. Suppose F_{τ} is smooth. We define the ζ-function.

Example 9. Suppose F_{τ} is smooth. We define the ζ-function.
We now suppose that
\[\Omega = \left\{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1 \right\} \]
and consider the line integral along the unit circle:
\[\int_{\Gamma} f(x, y) \, dx + g(x, y) \, dy \]
for some function \(f(x, y) \) and \(g(x, y) \).

If \(f(x, y) \) and \(g(x, y) \) are continuous on the unit circle, then by Green's Theorem,
\[\int_{\Gamma} f(x, y) \, dx + g(x, y) \, dy = \iint_{\Omega} \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) \, dx \, dy \]
which gives the area of the region \(\Omega \) by a double integral.

We will now show how to associate a partition in \(\Omega \) to a partition of the unit circle. For this reason we call the first partition a "coarse" partition.
where
for
and

we have the following formula for

the derivative of the vector

by the requirement

then we have immediately that

we define the normal vector

and for each

\(x \in \mathbb{R}^n \)

where

and

there are smooth functions

such that

in

and

W, K, A, B
Let $k \in x$. For any $y \in A$ and any $z \in A$, we have $z = r \cdot x$ and $r \cdot x = z$.

In this case, suppose now that $r \in A$. For any $u \in A$, we have $u = r \cdot x$ and $r \cdot x = u$.

Thus, we have $r \cdot x = u$ and $r \cdot x = u$.

Using (1) and (2) we see that

$$
(x \cdot y) \cdot z = x \cdot (y \cdot z)
$$

where the role of z and y are reversed.

Because $y \in A$ and $z \in A$, we have $x = (x \cdot y) \cdot z$.

Now let $x \in A$ and $z \in A$. To prove (1), we let

$$
((0 > x \cdot z) \cup (x \cdot y) \cdot z) = x \cdot y
$$

such that such that

and

there is an open neighborhood W of x in \mathbb{R} and there are smooth functions ϕ, ψ. W. A. L. T. A. R. E. D
For which

\(\langle x | A | x \rangle \geq \lambda \) for all \(x \in H \) and some constant \(\lambda \) such that

\(\text{dist}(x, \ker A) > 0 \) for all \(x \in H \) and some constant \(\lambda \) such that

\[\langle x | A | x \rangle \geq \lambda \]

For any compact subset \(K \) of \(H \)

\[\int_{K} \langle x | A | x \rangle \, d\mu = \langle x | A | x \rangle \, d\mu = \lambda \]

We have that

\[\|x\| \geq \lambda \]

W. K. Allred
\[
\|A\| = \|A^T A\|^{\frac{1}{2}}
\]

For any \(\|x\|_2 \leq \theta \), we have
\[
\|A x\| \leq \|A\| \|x\|_2 \leq \theta \|A\|.
\]

For any \(\|x\|_2 = \theta \), we have
\[
\|A x\| \leq \|A\| \|x\|_2 = \theta \|A\|.
\]

For any \(\|x\|_2 \geq \theta \), we have
\[
\|A x\| \geq \|A\| \|x\|_2 \geq \theta \|A\|.
\]

For any \(\|x\|_2 \leq \theta \), we have
\[
\|A x\| \leq \|A\| \|x\|_2 \leq \theta \|A\|.
\]

For any \(\|x\|_2 = \theta \), we have
\[
\|A x\| \leq \|A\| \|x\|_2 = \theta \|A\|.
\]

For any \(\|x\|_2 \geq \theta \), we have
\[
\|A x\| \geq \|A\| \|x\|_2 \geq \theta \|A\|.
\]

For any \(\|x\|_2 \leq \theta \), we have
\[
\|A x\| \leq \|A\| \|x\|_2 \leq \theta \|A\|.
\]

For any \(\|x\|_2 = \theta \), we have
\[
\|A x\| \leq \|A\| \|x\|_2 = \theta \|A\|.
\]

For any \(\|x\|_2 \geq \theta \), we have
\[
\|A x\| \geq \|A\| \|x\|_2 \geq \theta \|A\|.
\]

For any \(\|x\|_2 \leq \theta \), we have
\[
\|A x\| \leq \|A\| \|x\|_2 \leq \theta \|A\|.
\]

For any \(\|x\|_2 = \theta \), we have
\[
\|A x\| \leq \|A\| \|x\|_2 = \theta \|A\|.
\]

For any \(\|x\|_2 \geq \theta \), we have
\[
\|A x\| \geq \|A\| \|x\|_2 \geq \theta \|A\|.
\]
We integrate from 0 to a to obtain

\(\int_0^a \frac{\partial x}{\partial \theta} \, d\theta = x(\theta = a) - x(\theta = 0) \).

Integration by parts in this last expression, we see that

\[
(1) \partial x \, f(x) = (1) \phi(x) \, f(x) - (1) \phi(x) \, f(x)
\]

Intergrating with respect to \(\theta \) and letting \(\theta \to 0 \) we have that

\[
\left((x')^2 \right) \phi(x) + (x')^2 \frac{\partial \phi(x)}{\partial x} = (x')^2 \phi(x) + \phi(x) \frac{\partial}{\partial x} (x')^2
\]

So that

\[
\phi(x) (x'(-x)) \phi(x) + x(x')^2 \partial x - \phi(x) (x')^2 \frac{\partial}{\partial x} = (x')^2 \phi(x)
\]

and that

\[
\phi(x) (x'(-x)) \phi(x) + x(x')^2 \partial x = (x')^2 \phi(x).
\]

Note that \(x'(-x) \) is 1 for \(0 < x < a \) and 2 for \(x = 0 \), and that

\[
\phi(x) (x'(-x)) \phi(x) + x(x')^2 \partial x = (x')^2 \phi(x).
\]
\[
\begin{align*}
\text{We have from that} & \quad t \subset (x',\|\Lambda\|,\beta) \\
\text{then} & \quad (x',\|\Lambda\|,\beta) \subset \frac{\theta}{(x',\|\Lambda\|,\beta)} \\
\text{and} & \quad \frac{\theta}{(x',\|\Lambda\|,\beta)} \subset (x',\|\Lambda\|,\beta) \\
\text{we then have that} & \quad t \subset (x',\|\Lambda\|,\beta)
\end{align*}
\]
\[
\begin{align*}
\text{\textcopyright{K. Ahlred}}
\end{align*}
\]
We have given an almost complete proof that a point \(p \) is

\[
\frac{(x')^2}{(x')^2} \Rightarrow \frac{(y')^2}{(y')^2} \Rightarrow \frac{(z')^2}{(z')^2} \Rightarrow \frac{(w')^2}{(w')^2}
\]

for which (1) holds, and for which (1) holds, and for which (1) holds.

That is, for all \(x \), \(y \), and \(z \), we have

\[
\frac{(x')^2}{(x')^2} \Rightarrow \frac{(y')^2}{(y')^2} \Rightarrow \frac{(z')^2}{(z')^2} \Rightarrow \frac{(w')^2}{(w')^2}
\]

for almost all \(a \) in \(H \).

One then sees that this implies

\[
\frac{(x')^2}{(x')^2} \Rightarrow \frac{(y')^2}{(y')^2} \Rightarrow \frac{(z')^2}{(z')^2} \Rightarrow \frac{(w')^2}{(w')^2}
\]

By the Radon–Nikodym theorem of generalized derivation,

\[
\frac{(x')^2}{(x')^2} \Rightarrow \frac{(y')^2}{(y')^2} \Rightarrow \frac{(z')^2}{(z')^2} \Rightarrow \frac{(w')^2}{(w')^2}
\]

for each bounded subset \(B \) of \(H \).

Note that for the Radon measure on \(H \) and for each continuous function \(f \) on

\[
\int_B \frac{(x')^2}{(x')^2} \Rightarrow \frac{(y')^2}{(y')^2} \Rightarrow \frac{(z')^2}{(z')^2} \Rightarrow \frac{(w')^2}{(w')^2}
\]

for any \(g \) in \(L^1(B) \).

Since \(B \) is a bounded subset of \(H \),

\[
\int_B \frac{(x')^2}{(x')^2} \Rightarrow \frac{(y')^2}{(y')^2} \Rightarrow \frac{(z')^2}{(z')^2} \Rightarrow \frac{(w')^2}{(w')^2}
\]

for each \(x \) and \(y \) in \(B \).

Since \(B \) is a bounded subset of \(H \),

\[
\int_B \frac{(x')^2}{(x')^2} \Rightarrow \frac{(y')^2}{(y')^2} \Rightarrow \frac{(z')^2}{(z')^2} \Rightarrow \frac{(w')^2}{(w')^2}
\]

for each \(x \) and \(y \) in \(B \).

The above calculation implies that

\[
\int_B \frac{(x')^2}{(x')^2} \Rightarrow \frac{(y')^2}{(y')^2} \Rightarrow \frac{(z')^2}{(z')^2} \Rightarrow \frac{(w')^2}{(w')^2}
\]

for each \(x \) and \(y \) in \(B \).

Therefore, we now observe a situation in which countable additivity

\[
\int_B \frac{(x')^2}{(x')^2} \Rightarrow \frac{(y')^2}{(y')^2} \Rightarrow \frac{(z')^2}{(z')^2} \Rightarrow \frac{(w')^2}{(w')^2}
\]

for each \(x \) and \(y \) in \(B \).
We begin our discussion of this theorem by stating it as

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

and such that

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

such that

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:

\[f^{(k)}(x) = \frac{d^k f}{dx^k} \]

is a polynomial in

there are a number

and continuous

then:
\begin{align*}
\text{Lemma 9.} & \quad \forall \epsilon > 0, \exists \delta > 0 \text{ such that } \\
& \quad \forall (x, y) \in \mathbb{R}^2, ||x - y|| < \delta \Rightarrow ||f(x) - f(y)|| < \epsilon.
\end{align*}
We concentrate on the analytic properties of \(T_t \), with emphasis on the condition on \(A \) and the restriction on \(t \). Let \(\mathcal{S} \) be a smooth vector field along \(\mathbb{R}^d \), and suppose \(\mathcal{S} \) is a smooth vector field in a neighborhood of 0.

We now state some properties that are important in the proof of these results.

W. K. Allard.
GEOMETRIC MEASURE THEORY AND ELLIPTIC VARIATIONAL PROBLEMS

P. L. ALMGREN Jr.

1969.

[References]

90 -